Discrete spectra criteria for singular difference operators
We investigate oscillation and spectral properties (sufficient conditions for discreteness and boundedness below of the spectrum) of difference operators B(y)n+k = (-1)nwk n (pk n yk).
We investigate oscillation and spectral properties (sufficient conditions for discreteness and boundedness below of the spectrum) of difference operators B(y)n+k = (-1)nwk n (pk n yk).
The discrete Wiener-Hopf operator generated by a function with the Fourier series is the operator T(a) induced by the Toeplitz matrix on some weighted sequence space . We assume that w satisfies the Muckenhoupt condition and that a is a piecewise continuous function subject to some natural multiplier condition. The last condition is in particular satisfied if a is of bounded variation. Our main result is a Fredholm criterion and an index formula for T(a). It implies that the essential spectrum...
We introduce the concept of disjoint hypercyclic operators. These are operators performing the approximation of any given vectors with a common subsequence of iterates applied on a common vector. The notion is extended to sequences of operators, and applied to composition operators and differential operators on spaces of analytic functions.
Let be a locally compact group and let Recently, Chen et al. characterized hypercyclic, supercyclic and chaotic weighted translations on locally compact groups and their homogeneous spaces. There has been an increasing interest in studying the disjoint hypercyclicity acting on various spaces of holomorphic functions. In this note, we will study disjoint hypercyclic and disjoint supercyclic powers of weighted translation operators on the Lebesgue space in terms of the weights. Sufficient and...
Composition operators Cφ induced by a selfmap φ of some set S are operators acting on a space consisting of functions on S by composition to the right with φ, that is Cφf = f º φ. In this paper, we consider the Hilbert Hardy space H2 on the open unit disk and find exact formulas for distances ||Cφ - Cψ|| between composition operators. The selfmaps φ and ψ involved in those formulas are constant, inner, or analytic selfmaps of the unit disk fixing the origin.
For different reasons it is very useful to have at one’s disposal a duality formula for the fractional powers of the Laplacean, namely, , α ∈ ℂ, for ϕ belonging to a suitable function space and u to its topological dual. Unfortunately, this formula makes no sense in the classical spaces of distributions. For this reason we introduce a new space of distributions where the above formula can be established. Finally, we apply this distributional point of view on the fractional powers of the Laplacean...
We use a new technique of measures on Boolean algebras to investigate narrow operators on vector lattices. First we prove that, under mild assumptions, every finite rank operator is strictly narrow (before it was known that such operators are narrow). Then we show that every order continuous operator from an atomless vector lattice to a purely atomic one is order narrow. This explains in what sense the vector lattice structure of an atomless vector lattice given by an unconditional basis is far...
After introducing the notion of capacity in a general Hilbert space setting we look at the spectral bound of an arbitrary self-adjoint and semi-bounded operator . If is subjected to a domain perturbation the spectrum is shifted to the right. We show that the magnitude of this shift can be estimated in terms of the capacity. We improve the upper bound on the shift which was given in Capacity in abstract Hilbert spaces and applications to higher order differential operators (Comm. P. D. E., 24:759–775,...
Les racines carrées d’opérateurs différentiels accrétifs ont été définies et étudiées par Kato. Dans le cas d’opérateurs différentiels à coefficients , les racines carrées sont des opérateurs pseudo-différentiels. Le cas des opérateurs différentiels à coefficients mesurables et bornés conduit à des racines carrées au-delà des opérateurs pseudo-différentiels. Ces nouveaux opérateurs s’étudient grâce à des mesures de Carleson.
2000 Mathematics Subject Classification: 18B30, 47A12.Let A, B be two linear operators on a complex Hilbert space H. We extend a Bouldin's result (1969) conserning W(AB) - the numerical range of the product AB. We show, when AB = BA and A is normal, than W(AB).
We show that a B-space E has the (CRP) if and only if any dominated operator T from C[0, 1] into E is compact. Hence we apply this result to prove that c0 embeds isomorphically into the B-space of all compact operators from C[0, 1] into an arbitrary B-space E without the (CRP).
Given a positive Banach-Saks operator T between two Banach lattices E and F, we give sufficient conditions on E and F in order to ensure that every positive operator dominated by T is Banach-Saks. A counterexample is also given when these conditions are dropped. Moreover, we deduce a characterization of the Banach-Saks property in Banach lattices in terms of disjointness.