Estimates for a class of integral operators and appli-cations to the ?-Neumann problem.
Cet article est consacré à l’étude d’un problème lié au critère de Beurling Nyman sur l’hypothèse de Riemann. On y étudie la continuité de la projection de la fonction indicatrice de l’intervalle sur un sous-espace vectoriel variable de l’ensemble des fonctions dont le carré est intégrable sur la demi-droite réelle, engendré par des fonctions dilatées de la fonction partie fractionnaire. Plus généralement, étant un élément fixé d’un espace de Hilbert , on étudie l’application qui à un convexe...
Nous étudions un exemple de transformation non uniformément hyperbolique de l’intervalle . Des exemples analogues ont été étudiés par de nombreux auteurs. Notre méthode utilise une théorie spectrale, pour une classe d’opérateurs vérifiant des conditions faibles de Doeblin-Fortet, introduite dans [1]. Elle nous permet, en particulier, de donner une estimation de la vitesse de décroissance des corrélations pour des fonctions non höldériennes.
We find an exact asymptotic formula for the singular values of the integral operator of the form (, a Jordan measurable set) where , , and is slowly varying function with some additional properties. The formula is an explicit expression in terms of and .