Loading [MathJax]/extensions/MathZoom.js
We consider a class of Nemytskii superposition operators that covers the nonlinear part of traveling wave models from laser dynamics, population dynamics, and chemical kinetics. Our main result is the -continuity property of these operators over Sobolev-type spaces of periodic functions.
On montre que les fonctions qui opèrent, par composition a gauche, sur l’espace de Besov d’exposant , avec , dans l’espace euclidien de dimension , sont précisément les fonctions lipschitziennes.
In this article, we extend Caristi's fixed point theorem, Ekeland's variational principle and Takahashi's maximization theorem to fuzzy metric spaces in the sense of George and Veeramani [A. George , P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets and Systems. 64 (1994) 395-399]. Further, a direct simple proof of the equivalences among these theorems is provided.
In this work, we define a partial order on probabilistic metric spaces and establish some new Caristi's fixed point theorems and Ekeland's variational principle for the class of (right) continuous and Archimedean t-norms. As an application, a partial answer to Kirk's problem in metric spaces is given.
Global solvability and asymptotics of semilinear parabolic Cauchy problems in are considered. Following the approach of A. Mielke [15] these problems are investigated in weighted Sobolev spaces. The paper provides also a theory of second order elliptic operators in such spaces considered over , . In particular, the generation of analytic semigroups and the embeddings for the domains of fractional powers of elliptic operators are discussed.
Let (X,∥·∥) and (Y,∥·∥) be two normed spaces and K be a convex cone in X. Let CC(Y) be the family of all non-empty convex compact subsets of Y. We consider the Nemytskiĭ operators, i.e. the composition operators defined by (Nu)(t) = H(t,u(t)), where H is a given set-valued function. It is shown that if the operator N maps the space into (both are spaces of functions of bounded φ-variation in the sense of Riesz), and if it is globally Lipschitz, then it has to be of the form H(t,u(t)) = A(t)u(t)...
We give a characterization of the globally Lipschitzian composition operators acting in the space
2000 Mathematics Subject Classification: 90C26, 90C20, 49J52, 47H05, 47J20.In this paper we obtain some simple characterizations of the
solution sets of a pseudoconvex program and a variational inequality. Similar
characterizations of the solution set of a quasiconvex quadratic program are
derived. Applications of these characterizations are given.
We give a basic sequence characterization of relative weak compactness in c₀ and we construct new examples of closed, bounded, convex subsets of c₀ failing the fixed point property for nonexpansive self-maps. Combining these results, we derive the following characterization of weak compactness for closed, bounded, convex subsets C of c₀: such a C is weakly compact if and only if all of its closed, convex, nonempty subsets have the fixed point property for nonexpansive mappings.
Let V be an orthogonal representation of a compact Lie group G and let S(V),D(V) be the unit sphere and disc of V, respectively. If F: V → ℝ is a G-invariant C¹-map then the G-equivariant gradient C⁰-map ∇F: V → V is said to be admissible provided that . We classify the homotopy classes of admissible G-equivariant gradient maps ∇F: (D(V),S(V)) → (V,V∖0).
Currently displaying 1 –
20 of
222