Displaying 41 – 60 of 66

Showing per page

Spectral synthesis and operator synthesis

K. Parthasarathy, R. Prakash (2006)

Studia Mathematica

Relations between spectral synthesis in the Fourier algebra A(G) of a compact group G and the concept of operator synthesis due to Arveson have been studied in the literature. For an A(G)-submodule X of VN(G), X-synthesis in A(G) has been introduced by E. Kaniuth and A. Lau and studied recently by the present authors. To any such X we associate a V ( G ) -submodule X̂ of ℬ(L²(G)) (where V ( G ) is the weak-* Haagerup tensor product L ( G ) w * h L ( G ) ), define the concept of X̂-operator synthesis and prove that a closed set E...

Spectral well-behaved *-representations

S. J. Bhatt, M. Fragoulopoulou, A. Inoue (2005)

Banach Center Publications

In this brief account we present the way of obtaining unbounded *-representations in terms of the so-called "unbounded" C*-seminorms. Among such *-representations we pick up a special class with "good behaviour" and characterize them through some properties of the Pták function.

Star products and local line bundles

Richard Melrose (2004)

Annales de l’institut Fourier

The notion of a local line bundle on a manifold, classified by 2-cohomology with real coefficients, is introduced. The twisting of pseudodifferential operators by such a line bundle leads to an algebroid with elliptic elements with real-valued index, given by a twisted variant of the Atiyah-Singer index formula. Using ideas of Boutet de Monvel and Guillemin the corresponding twisted Toeplitz algebroid on any compact symplectic manifold is shown to yield the star products...

Strongly compact algebras.

Miguel Lacruz, Victor Lomonosov, Luis Rodríguez Piazza (2006)

RACSAM

An algebra of bounded linear operators on a Hilbert space is said to be strongly compact if its unit ball is relatively compact in the strong operator topology. A bounded linear operator on a Hilbert space is said to be strongly compact if the algebra generated by the operator and the identity is strongly compact. This notion was introduced by Lomonosov as an approach to the invariant subspace problem for essentially normal operators. First of all, some basic properties of strongly compact algebras...

Subalgebras to a Wiener type algebra of pseudo-differential operators

Joachim Toft (2001)

Annales de l’institut Fourier

We study general continuity properties for an increasing family of Banach spaces S w p of classes for pseudo-differential symbols, where S w = S w was introduced by J. Sjöstrand in 1993. We prove that the operators in Op ( S w p ) are Schatten-von Neumann operators of order p on L 2 . We prove also that Op ( S w p ) Op ( S w r ) Op ( S w r ) and S w p · S w q S w r , provided 1 / p + 1 / q = 1 / r . If instead 1 / p + 1 / q = 1 + 1 / r , then S w p w * S w q S w r . By modifying the definition of the S w p -spaces, one also obtains symbol classes related to the S ( m , g ) spaces.

Currently displaying 41 – 60 of 66