Some Results on Finiteness in Plateau's Problem, Part II.
We give a necessary and sufficient condition for a map deffned on a simply-connected quasi-convex metric space to factor through a tree. In case the target is the Euclidean plane and the map is Hölder continuous with exponent bigger than 1/2, such maps can be characterized by the vanishing of some integrals over winding number functions. This in particular shows that if the target is the Heisenberg group equipped with the Carnot-Carathéodory metric and the Hölder exponent of the map is bigger than...
A justification of heterogeneous membrane models as zero-thickness limits of a cylindral three-dimensional heterogeneous nonlinear hyperelastic body is proposed in the spirit of Le Dret (1995). Specific characterizations of the 2D elastic energy are produced. As a generalization of Bouchitté et al. (2002), the case where external loads induce a density of bending moment that produces a Cosserat vector field is also investigated. Throughout, the 3D-2D dimensional reduction is viewed as a problem...
A justification of heterogeneous membrane models as zero-thickness limits of a cylindral three-dimensional heterogeneous nonlinear hyperelastic body is proposed in the spirit of Le Dret (1995). Specific characterizations of the 2D elastic energy are produced. As a generalization of Bouchitté et al. (2002), the case where external loads induce a density of bending moment that produces a Cosserat vector field is also investigated. Throughout, the 3D-2D dimensional reduction is viewed as a problem...
This paper presents coordination algorithms for groups of mobile agents performing deployment and coverage tasks. As an important modeling constraint, we assume that each mobile agent has a limited sensing or communication radius. Based on the geometry of Voronoi partitions and proximity graphs, we analyze a class of aggregate objective functions and propose coverage algorithms in continuous and discrete time. These algorithms have convergence guarantees and are spatially distributed with respect...
This paper presents coordination algorithms for groups of mobile agents performing deployment and coverage tasks. As an important modeling constraint, we assume that each mobile agent has a limited sensing or communication radius. Based on the geometry of Voronoi partitions and proximity graphs, we analyze a class of aggregate objective functions and propose coverage algorithms in continuous and discrete time. These algorithms have convergence guarantees and are spatially distributed with...
This special issue provides information on current and future research directions in the emerging field of Decentralized Control of Large Scale Complex Systems. There is generally adopted view that a dynamic system is large scale complex whenever it is necessary to partition its analysis or synthesis problem to manageable subproblems. Its fundamental characteristics in modeling and control are high dimensionality, uncertainty, information structure constraints, and delays. Theory of large scale...
The paper deals with a Dirichlet spectral problem for an elliptic operator with ε-periodic coefficients in a 3D bounded domain of small thickness δ. We study the asymptotic behavior of the spectrum as ε and δ tend to zero. This asymptotic behavior depends crucially on whether ε and δ are of the same order (δ ≈ ε), or ε is much less than δ(δ = ετ, τ < 1), or ε is much greater than δ(δ = ετ, τ > 1). We consider all three cases.
The paper deals with a Dirichlet spectral problem for an elliptic operator with ε-periodic coefficients in a 3D bounded domain of small thickness δ. We study the asymptotic behavior of the spectrum as ε and δ tend to zero. This asymptotic behavior depends crucially on whether ε and δ are of the same order (δ ≈ ε), or ε is much less than δ(δ = ετ, τ < 1), or ε is much greater than δ(δ = ετ, τ > 1). ...
We consider the Laplacian in a domain squeezed between two parallel hypersurfaces in Euclidean spaces of any dimension, subject to Dirichlet boundary conditions on one of the hypersurfaces and Neumann boundary conditions on the other. We derive two-term asymptotics for eigenvalues in the limit when the distance between the hypersurfaces tends to zero. The asymptotics are uniform and local in the sense that the coefficients depend only on the extremal points where the ratio of the area of the Neumann...