Displaying 21 – 40 of 4413

Showing per page

A characterization of gradient Young-concentration measures generated by solutions of Dirichlet-type problems with large sources

Gisella Croce, Catherine Lacour, Gérard Michaille (2009)

ESAIM: Control, Optimisation and Calculus of Variations

We show how to capture the gradient concentration of the solutions of Dirichlet-type problems subjected to large sources of order 1 ε concentrated on an ε -neighborhood of a hypersurface of the domain. To this end we define the gradient Young-concentration measures generated by sequences of finite energy and establish a very simple characterization of these measures.

A characterization of gradient Young-concentration measures generated by solutions of Dirichlet-type problems with large sources

Gisella Croce, Catherine Lacour, Gérard Michaille (2008)

ESAIM: Control, Optimisation and Calculus of Variations

We show how to capture the gradient concentration of the solutions of Dirichlet-type problems subjected to large sources of order 1 ε concentrated on an ε-neighborhood of a hypersurface of the domain. To this end we define the gradient Young-concentration measures generated by sequences of finite energy and establish a very simple characterization of these measures.

A characterization of graphs which can be approximated in area by smooth graphs

Domenico Mucci (2001)

Journal of the European Mathematical Society

For vector valued maps, convergence in W 1 , 1 and of all minors of the Jacobian matrix in L 1 is equivalent to convergence weakly in the sense of currents and in area for graphs. We show that maps defined on domains of dimension n 3 can be approximated strongly in this sense by smooth maps if and only if the same property holds for the restriction to a.e. 2-dimensional plane intersecting the domain.

A Clarke–Ledyaev Type Inequality for Certain Non–Convex Sets

Ivanov, M., Zlateva, N. (2000)

Serdica Mathematical Journal

We consider the question whether the assumption of convexity of the set involved in Clarke-Ledyaev inequality can be relaxed. In the case when the point is outside the convex hull of the set we show that Clarke-Ledyaev type inequality holds if and only if there is certain geometrical relation between the point and the set.

A class of minimum principles for characterizing the trajectories and the relaxation of dissipative systems

Michael Ortiz, Alexander Mielke (2008)

ESAIM: Control, Optimisation and Calculus of Variations

This work is concerned with the reformulation of evolutionary problems in a weak form enabling consideration of solutions that may exhibit evolving microstructures. This reformulation is accomplished by expressing the evolutionary problem in variational form, i.e., by identifying a functional whose minimizers represent entire trajectories of the system. The particular class of functionals under consideration is derived by first defining a sequence of time-discretized minimum problems and subsequently...

A class of minimum principles for characterizing the trajectories and the relaxation of dissipative systems

Alexander Mielke, Michael Ortiz (2007)

ESAIM: Control, Optimisation and Calculus of Variations

This work is concerned with the reformulation of evolutionary problems in a weak form enabling consideration of solutions that may exhibit evolving microstructures. This reformulation is accomplished by expressing the evolutionary problem in variational form, i.e., by identifying a functional whose minimizers represent entire trajectories of the system. The particular class of functionals under consideration is derived by first defining a sequence of time-discretized minimum problems and...

A compactness result for a second-order variational discrete model

Andrea Braides, Anneliese Defranceschi, Enrico Vitali (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We analyze a nonlinear discrete scheme depending on second-order finite differences. This is the two-dimensional analog of a scheme which in one dimension approximates a free-discontinuity energy proposed by Blake and Zisserman as a higher-order correction of the Mumford and Shah functional. In two dimension we give a compactness result showing that the continuous problem approximating this difference scheme is still defined on special functions with bounded hessian, and we give an upper and a lower...

A compactness result for a second-order variational discrete model

Andrea Braides, Anneliese Defranceschi, Enrico Vitali (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

We analyze a nonlinear discrete scheme depending on second-order finite differences. This is the two-dimensional analog of a scheme which in one dimension approximates a free-discontinuity energy proposed by Blake and Zisserman as a higher-order correction of the Mumford and Shah functional. In two dimension we give a compactness result showing that the continuous problem approximating this difference scheme is still defined on special functions...

Currently displaying 21 – 40 of 4413