Quasi-minima
A new approach to irreversible quasistatic fracture growth is given, by means of Young measures. The study concerns a cohesive zone model with prescribed crack path, when the material gives different responses to loading and unloading phases. In the particular situation of constant unloading response, the result contained in [G. Dal Maso and C. Zanini, Proc. Roy. Soc. Edinburgh Sect. A 137 (2007) 253–279] is recovered. In this case, the convergence of the discrete time approximations is improved....
A new approach to irreversible quasistatic fracture growth is given, by means of Young measures. The study concerns a cohesive zone model with prescribed crack path, when the material gives different responses to loading and unloading phases. In the particular situation of constant unloading response, the result contained in [G. Dal Maso and C. Zanini, Proc. Roy. Soc. Edinburgh Sect. A137 (2007) 253–279] is recovered. In this case, the convergence of the discrete time approximations is improved. ...
The propagation of fractures in a solid undergoing cyclic loadings is known as the fatigue phenomenon. In this paper, we present a time continuous model for fatigue, in the special situation of the debonding of thin layers, coming from a time discretized version recently proposed by Jaubert and Marigo [C. R. Mecanique333 (2005) 550–556]. Under very general assumptions on the surface energy density and on the applied displacement, we discuss the well-posedness of our problem and we give the main...
We consider two quasistatic problems which describe the frictional contact between a deformable body and an obstacle, the so-called foundation. In the first problem the body is assumed to have a viscoelastic behavior, while in the other it is assumed to be elastic. The frictional contact is modeled by a general velocity dependent dissipation functional. We derive weak formulations for the models and prove existence and uniqueness results. The proofs are based on the theory of evolution variational...
We characterize quasi-static rate-independent evolutions, by means of their graph parametrization, in terms of a couple of equations: the first gives stationarity while the second provides the energy balance. An abstract existence result is given for functionals ℱ of class C1 in reflexive separable Banach spaces. We provide a couple of constructive proofs of existence which share common features with the theory of minimizing movements for gradient flows. Moreover, considering a sequence of functionals...