A version of Zhong's coercivity result for a general class of nonsmooth functionals.
We consider a mathematical model which describes the equilibrium between a viscoelastic body in frictionless contact with an obstacle. The contact is modelled with normal compliance, associated with Signorini's conditions and adhesion. The adhesion is modelled with a surface variable, the bonding field, whose evolution is described by a first-order differential equation. We establish a variational formulation of the mechanical problem and prove the existence and uniqueness of the weak solution....
In this paper we propose a solution of the Lambertian shape-from-shading (SFS) problem by designing a new mathematical framework based on the notion of viscosity solution. The power of our approach is twofolds: (1) it defines a notion of weak solutions (in the viscosity sense) which does not necessarily require boundary data. Moreover, it allows to characterize the viscosity solutions by their “minimums”; and (2) it unifies the works of [Rouy and Tourin, SIAM J. Numer. Anal.29 (1992) 867–884],...
We prove a sufficient condition of continuity at the boundary for quasiminima of degenerate type. W. P. Ziemer stated a Wiener-type criterion for the quasiminima defined by Giaquinta and Giusti. In this paper we extend the result of Ziemer to the case of weighted quasiminima, the weight being in the class of Muckenhoupt.
Rate-independent evolution for material models with nonconvex elastic energies is studied without any spatial regularization of the inner variable; due to lack of convexity, the model is developed in the framework of Young measures. An existence result for the quasistatic evolution is obtained in terms of compatible systems of Young measures. We also show as this result can be equivalently reformulated with probabilistic language and leads to the description of the quasistatic evolution in terms...
Rate-independent evolution for material models with nonconvex elastic energies is studied without any spatial regularization of the inner variable; due to lack of convexity, the model is developed in the framework of Young measures. An existence result for the quasistatic evolution is obtained in terms of compatible systems of Young measures. We also show as this result can be equivalently reformulated with probabilistic language and leads to the description of the quasistatic evolution in terms...
Following the -convergence approach introduced by Müller and Ortiz, the convergence of discrete dynamics for lagrangians with quadratic behavior is established.
Following the Γ-convergence approach introduced by Müller and Ortiz, the convergence of discrete dynamics for Lagrangians with quadratic behavior is established.
In the sub-Riemannian framework, we give geometric necessary and sufficient conditions for the existence of abnormal extremals of the Maximum Principle. We give relations between abnormality, -rigidity and length minimizing. In particular, in the case of three dimensional manifolds we show that, if there exist abnormal extremals, generically, they are locally length minimizing and in the case of four dimensional manifolds we exhibit abnormal extremals which are not -rigid and which can be minimizing...
It is shown that when in a higher order variational principle one fixes fields at the boundary leaving the field derivatives unconstrained, then the variational principle (in particular the solution space) is not invariant with respect to the addition of boundary terms to the action, as it happens instead when the correct procedure is applied. Examples are considered to show how leaving derivatives of fields unconstrained affects the physical interpretation of the model. This is justified in particular...
We discuss the stability of "critical" or "equilibrium" shapes of a shape-dependent energy functional. We analyze a problem arising when looking at the positivity of the second derivative in order to prove that a critical shape is an optimal shape. Indeed, often when positivity -or coercivity- holds, it does for a weaker norm than the norm for which the functional is twice differentiable and local optimality cannot be a priori deduced. We solve this problem for a particular but significant example....
The relation between the general optimality conditions in terms of contact cones and the Kuhn-Tucker conditions in the special case of pseudo-convex and quasi-convex functions and their consequence to Lagrangian multipliers are given.