Optimal control of nonsmooth system governed by quasi-linear elliptic equations.
We study first order optimality systems for the control of a system governed by a variational inequality and deal with Lagrange multipliers: is it possible to associate to each pointwise constraint a multiplier to get a “good” optimality system? We give positive and negative answers for the finite and infinite dimensional cases. These results are compared with the previous ones got by penalization or differentiation.
In this paper we study some optimal control problems of systems governed by quasilinear elliptic equations in divergence form with non differentiable coefficients at the origin. We prove existence of solutions and derive the optimality conditions by considering a perturbation of the differential operator coefficients that removes the singularity at the origin. Regularity of optimal controls is also deduced.
We consider optimal distributed and boundary control problems for semilinear parabolic equations, where pointwise constraints on the control and pointwise mixed control-state constraints of bottleneck type are given. Our main result states the existence of regular Lagrange multipliers for the state-constraints. Under natural assumptions, we are able to show the existence of bounded and measurable Lagrange multipliers. The method is based on results from the theory of continuous linear programming...
An optimal control problem for a model for stationary, low Mach number, highly nonisothermal, viscous flows is considered. The control problem involves the minimization of a measure of the distance between the velocity field and a given target velocity field. The existence of solutions of a boundary value problem for the model equations is established as is the existence of solutions of the optimal control problem. Then, a derivation of an optimality system, i.e., a boundary value problem from...
We consider optimal control problems for the bidomain equations of cardiac electrophysiology together with two-variable ionic models, e.g. the Rogers–McCulloch model. After ensuring the existence of global minimizers, we provide a rigorous proof for the system of first-order necessary optimality conditions. The proof is based on a stability estimate for the primal equations and an existence theorem for weak solutions of the adjoint system.
We consider an optimal control problem for the three-dimensional non-linear Primitive Equations of the ocean in a vertically bounded and horizontally periodic domain. We aim to reconstruct the initial state of the ocean from Lagrangian observations. This inverse problem is formulated as an optimal control problem which consists in minimizing a cost function representing the least square error between Lagrangian observations and their model counterpart, plus a regularization term. This paper proves...
In this paper, by using the classical control theory, the optimal control problem for fractional order cooperative system governed by Schrödinger operator is considered. The fractional time derivative is considered in a Riemann-Liouville and Caputo senses. The maximum principle for this system is discussed. We first study by using the Lax-Milgram Theorem, the existence and the uniqueness of the solution of the fractional differential system in a Hilbert space. Then we show that the considered optimal...
We deal with an optimal control problem for variational inequalities, where the monotone operators as well as the convex sets of possible states depend on the control parameter. The existence theorem for the optimal control will be applied to the optimal design problems for an elasto-plastic beam and an elastic plate, where a variable thickness appears as a control variable.
This paper presents a theoretical approach to optimal control problems (OCPs) governed by a class of control systems with discontinuous right-hand sides. A possible application of the framework developed in this paper is constituted by the conventional sliding mode dynamic processes. The general theory of constrained OCPs is used as an analytic background for designing numerically tractable schemes and computational methods for their solutions. The proposed analytic method guarantees consistency...