Previous Page 2

Displaying 21 – 29 of 29

Showing per page

Preface

Alexander Ioffe, Kazimierz Malanowski, Fredi Tröltzsch (2009)

Control and Cybernetics

Prékopa–Leindler type inequalities on Riemannian manifolds, Jacobi fields, and optimal transport

Dario Cordero-Erausquin, Robert J. McCann, Michael Schmuckenschläger (2006)

Annales de la faculté des sciences de Toulouse Mathématiques

We investigate Prékopa-Leindler type inequalities on a Riemannian manifold M equipped with a measure with density e - V where the potential V and the Ricci curvature satisfy Hess x V + Ric x λ I for all x M , with some λ . As in our earlier work [14], the argument uses optimal mass transport on M , but here, with a special emphasis on its connection with Jacobi fields. A key role will be played by the differential equation satisfied by the determinant of a matrix of Jacobi fields. We also present applications of the method...

Problemi di partizioni ottimali con dati illimitati

Giuseppe Congedo, Italo Tamanini (1993)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In questa Nota si risolve il problema di esistenza per un funzionale alla Mumford-Shah in ipotesi più generali rispetto ad altri precedenti lavori sull'argomento. Si dimostra inoltre la locale finitezza delle partizioni ottimali trovate.

Projective Reeds-Shepp car on S2 with quadratic cost

Ugo Boscain, Francesco Rossi (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Fix two points x , x ¯ S 2 and two directions (without orientation) η , η ¯ of the velocities in these points. In this paper we are interested to the problem of minimizing the cost J [ γ ] = 0 T γ ( t ) ( γ ˙ ( t ) , γ ˙ ( t ) ) + K γ ( t ) 2 γ ( t ) ( γ ˙ ( t ) , γ ˙ ( t ) ) d t along all smooth curves starting from x with direction η and ending in x ¯ with direction η ¯ . Here g is the standard Riemannian metric on S2 and K γ is the corresponding geodesic curvature. The interest of this problem comes from mechanics and geometry of vision. It can be formulated as a sub-Riemannian problem on the lens space L(4,1). We...

Proof of the double bubble conjecture.

Hutchings, Michael, Morgan, Frank, Ritoré, Manuel, Ros, Antonio (2000)

Electronic Research Announcements of the American Mathematical Society [electronic only]

Currently displaying 21 – 29 of 29

Previous Page 2