Displaying 521 – 540 of 842

Showing per page

Optimal transportation for the determinant

Guillaume Carlier, Bruno Nazaret (2008)

ESAIM: Control, Optimisation and Calculus of Variations

Among 3 -valued triples of random vectors (X,Y,Z) having fixed marginal probability laws, what is the best way to jointly draw (X,Y,Z) in such a way that the simplex generated by (X,Y,Z) has maximal average volume? Motivated by this simple question, we study optimal transportation problems with several marginals when the objective function is the determinant or its absolute value.

Optimal transportation networks as free Dirichlet regions for the Monge-Kantorovich problem

Giuseppe Buttazzo, Eugene Stepanov (2003)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

In the paper the problem of constructing an optimal urban transportation network in a city with given densities of population and of workplaces is studied. The network is modeled by a closed connected set of assigned length, while the optimality condition consists in minimizing the Monge-Kantorovich functional representing the total transportation cost. The cost of trasporting a unit mass between two points is assumed to be proportional to the distance between them when the transportation is carried...

Optimality conditions for nonconvex variational problems relaxed in terms of Young measures

Tomáš Roubíček (1998)

Kybernetika

The scalar nonconvex variational problems of the minimum-energy type on Sobolev spaces are studied. As the Euler–Lagrange equation dramatically looses selectivity when extended in terms of the Young measures, the correct optimality conditions are sought by means of the convex compactification theory. It turns out that these conditions basically combine one part from the Euler–Lagrange equation with one part from the Weierstrass condition.

Optimization of the shape and the location of the actuators in an internal control problem

Antoine Henrot, Hervé Maillot (2001)

Bollettino dell'Unione Matematica Italiana

Consideriamo un corpo Ω sottomesso ad una forza esterna data e del quale vogliamo controllare lo spostamento. Cerchiamo un rinforzo per minimizzare un funzionale che dipende dallo spostamento del corpo. L'insieme delle configurazioni ammissibili è un insieme di funzioni caratteristiche di sottodomini (un rinforzo ammissibile è un sottodominio con una rigidezza uguale ad uno) di volume prescritto. In tal caso, si ha bisogno di una versione rilassata del problema di ottimizzazione e si cerca una densità...

Path functionals over Wasserstein spaces

Alessio Brancolini, Giuseppe Buttazzo, Filippo Santambrogio (2006)

Journal of the European Mathematical Society

Given a metric space X we consider a general class of functionals which measure the cost of a path in X joining two given points x 0 and x 1 , providing abstract existence results for optimal paths. The results are then applied to the case when X is aWasserstein space of probabilities on a given set Ω and the cost of a path depends on the value of classical functionals over measures. Conditions for linking arbitrary extremal measures μ 0 and μ 1 by means of finite cost paths are given.

Pattern evolution

Augusto Visintin (1990)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Phase field method for mean curvature flow with boundary constraints

Elie Bretin, Valerie Perrier (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper is concerned with the numerical approximation of mean curvature flow t → Ω(t) satisfying an additional inclusion-exclusion constraint Ω1 ⊂ Ω(t) ⊂ Ω2. Classical phase field model to approximate these evolving interfaces consists in solving the Allen-Cahn equation with Dirichlet boundary conditions. In this work, we introduce a new phase field model, which can be viewed as an Allen Cahn equation with a penalized double well potential. We first justify this method by a Γ-convergence result...

Currently displaying 521 – 540 of 842