Topology optimization - broadening the areas of application
This paper deals with the formulation of a necessary optimality condition for a topology optimization problem for an elastic contact problem with Tresca friction. In the paper a quasistatic contact model is considered, rather than a stationary one used in the literature. The functional approximating the normal contact stress is chosen as the shape functional. The aim of the topology optimization problem considered is to find the optimal material distribution inside a design domain occupied by the...
This paper deals with the formulation of the necessary optimality condition for a topology optimization problem of an elastic body in unilateral contact with a rigid foundation. In the contact problem of Tresca, a given friction is governed by an elliptic variational inequality of the second order. The optimization problem consists in finding such topology of the domain occupied by the body that the normal contact stress along the contact boundary of the body is minimized. The topological derivative...
In recent research in the optimization of transportation networks, the problem was formalized as finding the optimal paths to transport a measure y+ onto a measure y- with the same mass. This approach is realistic for simple good distribution networks (water, electric power,. ..) but it is no more realistic when we want to specify who goes where, like in the mailing problem or the optimal urban traffic network problem. In this paper, we present a new framework generalizing the former approathes...
Des liens inattendus ont été récemment mis à jour entre le transport optimal de Monge–Kantorovich et certains problèmes de géométrie riemannienne, en liaison avec la courbure de Ricci. Une des retombées de ces interactions est la naissance d’une théorie “synthétique” des espaces métriques mesurés à courbure de Ricci minorée, venant compléter la théorie classique des espaces métriqes à courbure sectionnelle minorée. Dans ce texte (également fourni aux actes du Séminaire de Théorie Spectrale et Géométrie...
By disintegration of transport plans it is introduced the notion of transport class. This allows to consider the Monge problem as a particular case of the Kantorovich transport problem, once a transport class is fixed. The transport problem constrained to a fixed transport class is equivalent to an abstract Monge problem over a Wasserstein space of probability measures. Concerning solvability of this kind of constrained problems, it turns out that in some sense the Monge problem corresponds to a...
We first prove existence and uniqueness of optimal transportation maps for the Monge’s problem associated to a cost function with a strictly convex constraint in the Euclidean plane ℝ2. The cost function coincides with the Euclidean distance if the displacement y − x belongs to a given strictly convex set, and it is infinite otherwise. Secondly, we give a sufficient condition for existence and uniqueness of optimal transportation maps for the original Monge’s problem in ℝ2. Finally, we get existence...
We show that any strictly mean convex translator of dimension n ≥ 3 which admits a cylindrical estimate and a corresponding gradient estimate is rotationally symmetric. As a consequence, we deduce that any translating solution of the mean curvature flow which arises as a blow-up limit of a two-convex mean curvature flow of compact immersed hypersurfaces of dimension n ≥ 3 is rotationally symmetric. The proof is rather robust, and applies to a more general class of translator equations. As a particular...