Feuilletages Proches d'une Fibration. / C. Bonatti.
Nous étudions les feuilletages riemanniens sur les variétés simplement connexes d’un point de vue qualitatif. Nous montrons tout d’abord que ces feuilletages peuvent être approchés par des fibrations de Seifert généralisées. Nous montrons ensuite que, pour une certaine métrique quasi-fibrée, les feuilles de ces feuilletages sont des sous-variétés minimales. Comme application, nous montrons que les seuls feuilletages riemanniens qui ne sont pas des fibrés de seifert, sur les sphères et les espace...
Dans cet article, nous étudions le groupoïde de Galois d’un germe de feuilletage holomorphe de codimension un. Nous associons à ce -groupoïde de Lie un invariant biméromorphe : le rang transverse. Nous étudions en détails les relations entre cet invariant, l’existence de suites de Godbillon-Vey particulières et l’existence d’une intégrale première dans une extension fortement normale du corps différentiel des germes de fonctions méromorphes. Nous obtenons ainsi une généralisation d’un théorème...
Nous étudions les feuilletages lisses totalement géodésiques de codimension des variétés lorentziennes. Nous nous intéressons notamment aux relations entre les flots riemanniens et les feuilletages géodésiques. Nous prouvons que, quitte à prendre un revêtement d’ordre , tout fibré de Seifert possède un tel feuilletage.
Soit une variété de Seifert de groupe fondamental non virtuellement résoluble. Soit un feuilletage de dimension sur , muni d’une structure projective réelle transverse. On suppose que satisfait la propriété de relèvement des chemins, i.e., que l’espace des feuilles du relèvement de dans le revêtement universel de est séparé au sens de Hausdorff. On montre qu’à revêtements finis près, est soit une fibration projective, soit un feuilletage géodésique convexe, soit un feuilletage horocyclique...
We prove fibration theorems on compact Kähler manifolds with conditions on first cohomology groups of fundamental groups with respect to unitary representations into Hilbert spaces. If the fundamental group T of compact Kähler manifold X violates Property (T) of Kazhdan’s, then for some unitary representation . By our earlier work there exists a -closed holomorphic 1-form with coefficients twisted by some unitary representation , possibly non-isomorphic to . Taking norms we obtains a positive...