The Weierstrass representation for complete minimal real Kaehler submanifolds of codimension two.
This paper belongs to a series of papers devoted to the study of the cohomology of classifying spaces. Generalizing the Weil algebra of a Lie algebra and Kalkman’s BRST model, here we introduce the Weil algebra associated to any Lie algebroid . We then show that this Weil algebra is related to the Bott-Shulman complex (computing the cohomology of the classifying space) via a Van Est map and we prove a Van Est isomorphism theorem. As application, we generalize and find a simpler more conceptual...
Around 1923, Élie Cartan introduced affine connections on manifolds and defined the main related concepts: torsion, curvature, holonomy groups. He discussed applications of these concepts in Classical and Relativistic Mechanics; in particular he explained how parallel transport with respect to a connection can be related to the principle of inertia in Galilean Mechanics and, more generally, can be used to model the motion of a particle in a gravitational field. In subsequent papers, Élie Cartan...
Soit un feuilletage riemannien sur une variété compacte; est le feuilletage singulier défini par les adhérences des feuilles le feuilletage induit sur une adhérence générique. On étudie le cas où n’a pas de champ transverse non trivial. Alors l’espace quotient a une structure naturelle de variété de Sataké, de manière que la projection soit un morphisme (de variétés de Sataké) avec pliage autour des adhérences singulières.
Soit un -fibré principal différentiable sur une variété ( un groupe de Lie compact). Étant donné une action d’un groupe de Lie compact sur , on se pose la question de savoir si elle provient d’une action sur le fibré . L’originalité de ce travail est de relier ce problème à l’existence de points fixes pour les actions de que l’on induit naturellement sur divers espaces de modules de -connexions sur .
Nous développons une théorie de Voronoï géométrique. En l’appliquant aux familles classiques de réseaux euclidiens (par exemple symplectiques ou orthogonaux), nous obtenons notamment de nouveaux résultats de finitude concernant les configurations de vecteurs minimaux et les réseaux particuliers (par exemple parfaits) de ces familles. Les méthodes géométriques introduites sont également illustrées par l’étude d’objets voisins (formes de Humbert) ou analogues (surfaces de Riemann).