Sechseckgewebe auf Flachen Positiver oder Negativer Krummung
The purpose of this article is to obtain sharp estimates for the first eigenvalue of the stability operator of constant mean curvature closed hypersurfaces immersed into locally symmetric Riemannian spaces satisfying suitable curvature conditions (which includes, in particular, a Riemannian space with constant sectional curvature). As an application, we derive a nonexistence result concerning strongly stable hypersurfaces in these ambient spaces.
Let be an immersed surface in with constant mean curvature. We consider the traceless Weingarten operator associated to the second fundamental form of the surface, and we introduce a tensor , related to the Abresch-Rosenberg quadratic differential form. We establish equations of Simons type for both and . By using these equations, we characterize some immersions for which or is appropriately bounded.
On any space-like Weingarten surface in the three-dimensional Minkowski space we introduce locally natural principal parameters and prove that such a surface is determined uniquely up to motion by a special invariant function, which satisfies a natural non-linear partial differential equation. This result can be interpreted as a solution to the Lund-Regge reduction problem for space-like Weingarten surfaces in Minkowski space. We apply this theory to linear fractional space-like Weingarten surfaces...
Nous passons en revue certains résultats récents sur l’existence et l’unicité des sphères à courbure moyenne constante dans les variétés riemanniennes homogènes simplement connexes de dimension et leurs liens avec le problème isopérimétrique dans ces variétés.