Invariants and canonical equations of hypersurfaces of second order in -dimensional Euclidean space.
We classify all F2Mm1, m2, n1, n2-natural operators Atransforming projectable-projectable torsion-free classical linear connections ∇ on fibered-fibered manifolds Y of dimension (m1,m2, n1, n2) into rth order Lagrangians A(∇) on the fibered-fibered linear frame bundle Lfib-fib(Y) on Y. Moreover, we classify all F2Mm1, m2, n1, n2-natural operators B transforming projectable-projectable torsion-free classical linear connections ∇ on fiberedfibered manifolds Y of dimension (m1, m2, n1, n2) into Euler...
Let be fixed natural numbers. We prove that for -manifolds the set of all linear natural operators is a finitely dimensional vector space over . We construct explicitly the bases of the vector spaces. As a corollary we find all linear natural operators .
Let be the r-jet prolongation of the cotangent bundle of an n-dimensional manifold M and let be the dual vector bundle. For natural numbers r and n, a complete classification of all linear natural operators lifting 1-forms from M to 1-forms on is given.
We give a classification of all linear natural operators transforming affinors on each n-dimensional manifold M into affinors on , where is the product preserving bundle functor given by a Weil algebra A, under the condition that n ≥ 2.
We define equivariant tensors for every non-negative integer and every Weil algebra and establish a one-to-one correspondence between the equivariant tensors and linear natural operators lifting skew-symmetric tensor fields of type on an -dimensional manifold to tensor fields of type on if . Moreover, we determine explicitly the equivariant tensors for the Weil algebras , where and are non-negative integers.
Nous étudions les métriques riemanniennes holomorphes sur les variétés complexes compactes de dimension . Nous montrons que, contrairement au cas réel, une métrique riemannienne holomorphe possède un “grand” pseudo-groupe d’isométries locales. Ceci implique qu’une telle métrique n’existe pas sur les variétés complexes compactes simplement connexes de dimension .
Existence and uniqueness theorems for weak solutions of a complex Monge-Ampère equation are established, extending the Bedford-Taylor pluripotential theory. As a consequence, using the Tian-Yau-Zelditch theorem, it is shown that geodesics in the space of Kähler potentials can be approximated by geodesics in the spaces of Bergman metrics. Motivation from Donaldson’s program on constant scalar curvature metrics and Yau’s strategy of approximating Kähler metrics by Bergman metrics is also discussed....
In this article we give an obstruction to integrability by quadratures of an ordinary differential equation on the differential Galois group of variational equations of any order along a particular solution. In Hamiltonian situation the condition on the Galois group gives Morales-Ramis-Simó theorem. The main tools used are Malgrange pseudogroup of a vector field and Artin approximation theorem.
All natural affinors on the -th order cotangent bundle are determined. Basic affinors of this type are the identity affinor id of and the -th power affinors with defined by the -th power transformations of . An arbitrary natural affinor is a linear combination of the basic ones.
Let be such that . Let be a fibered manifold with -dimensional basis and -dimensional fibers. All natural affinors on are classified. It is deduced that there is no natural generalized connection on . Similar problems with instead of are solved.
We deduce that for and , every natural affinor on over -manifolds is of the form for a real number , where is the identity affinor on .
For natural numbers r,s,q,m,n with s ≥ r ≤ q we describe all natural affinors on the (r,s,q)-cotangent bundle over an (m,n)-dimensional fibered manifold Y.