Coincidence set of minimal surfaces for the thin obstacle.
This paper is a continuation of [2], dealing with a general, not-necessarily torsion-free, connection. It characterizes all possible systems of generators for vector-field valued operators that depend naturally on a set of vector fields and a linear connection, describes the size of the space of such operators and proves the existence of an ‘ideal’ basis consisting of operators with given leading terms which satisfy the (generalized) Bianchi–Ricci identities without corrections.
For commuting linear operators we describe a range of conditions which are weaker than invertibility. When any of these conditions hold we may study the composition in terms of the component operators or combinations thereof. In particular the general inhomogeneous problem reduces to a system of simpler problems. These problems capture the structure of the solution and range spaces and, if the operators involved are differential, then this gives an effective way of lowering the differential...
A fundamental question about hypersurfaces in the Euclidean space is to decide if the sphere is the only compact hypersurface (embedded or immersed) with constant higher order mean curvature Hr, for some r = 1, ..., n.
In the present paper we classify all surfaces in 3 with a canonical principal direction. Examples of this type of surfaces are constructed. We prove that the only minimal surface with a canonical principal direction in the Euclidean space 3 is the catenoid.
In this paper, by using Cheng-Yau’s self-adjoint operator , we study the complete hypersurfaces in a sphere with constant scalar curvature.
We show that there exists a complete minimal surface immersed into which is conformally equivalent to a compact hyperelliptic Riemann surface of genus three minus one point. The end of the surface is of Enneper type and its total curvature is .
In this paper we review some topics on the theory of complete minimal surfaces in three dimensional Euclidean space.
In this paper we construct complete minimal surfaces of arbitrary genus in with one, two, three and four ends respectively. Furthermore the surfaces lie between two parallel planes of .