Displaying 41 – 60 of 161

Showing per page

Combinatorial differential geometry and ideal Bianchi–Ricci identities II – the torsion case

Josef Janyška, Martin Markl (2012)

Archivum Mathematicum

This paper is a continuation of [2], dealing with a general, not-necessarily torsion-free, connection. It characterizes all possible systems of generators for vector-field valued operators that depend naturally on a set of vector fields and a linear connection, describes the size of the space of such operators and proves the existence of an ‘ideal’ basis consisting of operators with given leading terms which satisfy the (generalized) Bianchi–Ricci identities without corrections.

Commuting linear operators and algebraic decompositions

Rod A. Gover, Josef Šilhan (2007)

Archivum Mathematicum

For commuting linear operators P 0 , P 1 , , P we describe a range of conditions which are weaker than invertibility. When any of these conditions hold we may study the composition P = P 0 P 1 P in terms of the component operators or combinations thereof. In particular the general inhomogeneous problem P u = f reduces to a system of simpler problems. These problems capture the structure of the solution and range spaces and, if the operators involved are differential, then this gives an effective way of lowering the differential...

Compact hypersurfaces with constant higher order mean curvatures.

Antonio Ros Mulero (1987)

Revista Matemática Iberoamericana

A fundamental question about hypersurfaces in the Euclidean space is to decide if the sphere is the only compact hypersurface (embedded or immersed) with constant higher order mean curvature Hr, for some r = 1, ..., n.

Complete minimal surfaces in 3 with type Enneper end

Nedir Do Espirito Santo (1994)

Annales de l'institut Fourier

We show that there exists a complete minimal surface immersed into 3 which is conformally equivalent to a compact hyperelliptic Riemann surface of genus three minus one point. The end of the surface is of Enneper type and its total curvature is - 16 π .

Complete minimal surfaces in R3.

Francisco J. López, Francisco Martín (1999)

Publicacions Matemàtiques

In this paper we review some topics on the theory of complete minimal surfaces in three dimensional Euclidean space.

Complete minimal surfaces of arbitrary genus in a slab of 3

Celso J. Costa, Plinio A. Q. Simöes (1996)

Annales de l'institut Fourier

In this paper we construct complete minimal surfaces of arbitrary genus in 3 with one, two, three and four ends respectively. Furthermore the surfaces lie between two parallel planes of 3 .

Currently displaying 41 – 60 of 161