Displaying 141 – 160 of 322

Showing per page

Local reflexion spaces

Jan Gregorovič (2012)

Archivum Mathematicum

A reflexion space is generalization of a symmetric space introduced by O. Loos in [4]. We generalize locally symmetric spaces to local reflexion spaces in the similar way. We investigate, when local reflexion spaces are equivalently given by a locally flat Cartan connection of certain type.

Local well-posedness of solutions to 2D magnetic Prandtl model in the Prandtl-Hartmann regime

Yuming Qin, Xiuqing Wang, Junchen Liu (2025)

Applications of Mathematics

We consider the 2D magnetic Prandtl equation in the Prandtl-Hartmann regime in a periodic domain and prove the local existence and uniqueness of solutions by energy methods in a polynomial weighted Sobolev space. On the one hand, we have noted that the x -derivative of the pressure P plays a key role in all known results on the existence and uniqueness of solutions to the Prandtl-Hartmann regime equations, in which the case of favorable P ...

Locally symmetric immersions

José Carmelo González-Dávila, Lieven Vanhecke (1999)

Czechoslovak Mathematical Journal

We use reflections with respect to submanifolds and related geometric results to develop, inspired by the work of Ferus and other authors, in a unified way a local theory of extrinsic symmetric immersions and submanifolds in a general analytic Riemannian manifold and in locally symmetric spaces. In particular we treat the case of real and complex space forms and study additional relations with holomorphic and symplectic reflections when the ambient space is almost Hermitian. The global case is also...

Nonresonance conditions for arrangements

Daniel C. Cohen, Alexandru Dimca, Peter Orlik (2003)

Annales de l’institut Fourier

We prove a vanishing theorem for the cohomology of the complement of a complex hyperplane arrangement with coefficients in a complex local system. This result is compared with other vanishing theorems, and used to study Milnor fibers of line arrangements, and hypersurface arrangements.

Notes on symmetric conformal geometries

Jan Gregorovič, Lenka Zalabová (2015)

Archivum Mathematicum

In this article, we summarize the results on symmetric conformal geometries. We review the results following from the general theory of symmetric parabolic geometries and prove several new results for symmetric conformal geometries. In particular, we show that each symmetric conformal geometry is either locally flat or covered by a pseudo-Riemannian symmetric space, where the covering is a conformal map. We construct examples of locally flat symmetric conformal geometries that are not pseudo-Riemannian...

Noyau de Cauchy-Szegö d'un espace symétrique de type Cayley

Mohammed Chadli (1998)

Annales de l'institut Fourier

Dans cet article, en utilisant les algèbres de Jordan euclidiennes, nous étudions l’espace de Hardy H 2 ( Ξ ) d’un espace symétrique de type Cayley = G / H . Nous montrons que le noyau de Cauchy-Szegö de H 2 ( Ξ ) s’exprime comme somme d’une série faisant intervenir la fonction c de Harish-Chandra de l’espace symétrique riemannien D = G / K , la fonction c de l’espace symétrique c -dual 𝒩 de et les fonctions sphériques de l’espace symétrique ordonné 𝒩 . Nous établissons, dans le cas où la dimension de l’algèbre de Jordan associée...

Currently displaying 141 – 160 of 322