Isoparametric Functions on Riemannian Manifolds. I.
We characterize Clifford hypersurfaces and Cartan minimal hypersurfaces in a sphere by some properties of extrinsic shapes of their geodesics.
Dans cet article, nous proposons une approche très directe de différents inégalités isopérimétriques.
We construct the first examples of continuous families of isospectral Riemannian metrics that are not locally isometric on closed manifolds , more precisely, on , where is a torus of dimension and is a sphere of dimension . These metrics are not locally homogeneous; in particular, the scalar curvature of each metric is nonconstant. For some of the deformations, the maximum scalar curvature changes during the deformation.
We study the special Lagrangian Grassmannian , with , and its reduced space, the reduced Lagrangian Grassmannian . The latter is an irreducible symmetric space of rank and is the quotient of the Grassmannian under the action of a cyclic group of isometries of order . The main result of this paper asserts that the symmetric space possesses non-trivial infinitesimal isospectral deformations. Thus we obtain the first example of an irreducible symmetric space of arbitrary rank , which is...