Displaying 181 – 200 of 212

Showing per page

Isospectral deformations of closed riemannian manifolds with different scalar curvature

Carolyn S. Gordon, Ruth Gornet, Dorothee Schueth, David L. Webb, Edward N. Wilson (1998)

Annales de l'institut Fourier

We construct the first examples of continuous families of isospectral Riemannian metrics that are not locally isometric on closed manifolds , more precisely, on S n × T m , where T m is a torus of dimension m 2 and S n is a sphere of dimension n 4 . These metrics are not locally homogeneous; in particular, the scalar curvature of each metric is nonconstant. For some of the deformations, the maximum scalar curvature changes during the deformation.

Isospectral deformations of the Lagrangian Grassmannians

Jacques Gasqui, Hubert Goldschmidt (2007)

Annales de l’institut Fourier

We study the special Lagrangian Grassmannian S U ( n ) / S O ( n ) , with n 3 , and its reduced space, the reduced Lagrangian Grassmannian X . The latter is an irreducible symmetric space of rank n - 1 and is the quotient of the Grassmannian S U ( n ) / S O ( n ) under the action of a cyclic group of isometries of order n . The main result of this paper asserts that the symmetric space X possesses non-trivial infinitesimal isospectral deformations. Thus we obtain the first example of an irreducible symmetric space of arbitrary rank 2 , which is...

Currently displaying 181 – 200 of 212