Displaying 2041 – 2060 of 5556

Showing per page

Inf-convolution and regularization of convex functions on Riemannian manifolds of nonpositive curvature.

Daniel Azagra, Juan Ferrera (2006)

Revista Matemática Complutense

We show how an operation of inf-convolution can be used to approximate convex functions with C1 smooth convex functions on Riemannian manifolds with nonpositive curvature (in a manner that not only is explicit but also preserves some other properties of the original functions, such as ordering, symmetries, infima and sets of minimizers), and we give some applications.

Infinitesimal automorphisms and deformations of parabolic geometries

Andreas Čap (2008)

Journal of the European Mathematical Society

We show that infinitesimal automorphisms and infinitesimal deformations of parabolic geometries can be nicely described in terms of the twisted de Rham sequence associated to a certain linear connection on the adjoint tractor bundle. For regular normal geometries, this description can be related to the underlying geometric structure using the machinery of BGG sequences. In the locally flat case, this leads to a deformation complex, which generalizes the well known complex for locally conformally...

Infinitesimal bending of a subspace of a space with non-symmetric basic tensor

Svetislav M. Minčić, Ljubica S. Velimirović (2005)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

In this work infinitesimal bending of a subspace of a generalized Riemannian space (with non-symmetric basic tensor) are studied. Based on non-symmetry of the connection, it is possible to define four kinds of covariant derivative of a tensor. We have obtained derivation formulas of the infinitesimal bending field and integrability conditions of these formulas (equations).

Infinitesimal characterization of almost Hermitian homogeneous spaces

Sergio Console, Lorenzo Nicolodi (1999)

Commentationes Mathematicae Universitatis Carolinae

In this note it is shown that almost Hermitian locally homogeneous manifolds are determined, up to local isometries, by an integer k H , the covariant derivatives of the curvature tensor up to order k H + 2 and the covariant derivatives of the complex structure up to the second order calculated at some point. An example of a Hermitian locally homogeneous manifold which is not locally isometric to any Hermitian globally homogeneous manifold is given.

Infinitesimal rigidity of Euclidean submanifolds

M. Dajczer, L. L. Rodriguez (1990)

Annales de l'institut Fourier

A submanifold M n of the Euclidean space R n is said to be infinitesimally rigid if any smooth variation which is isometric to first order is trivial. The main purpose of this paper is to show that local or global conditions which are well known to imply isometric rigidity also imply infinitesimal rigidity.

Currently displaying 2041 – 2060 of 5556