Displaying 221 – 240 of 5550

Showing per page

A Non-Probabilistic Proof of the Assouad Embedding Theorem with Bounds on the Dimension

Guy David, Marie Snipes (2013)

Analysis and Geometry in Metric Spaces

We give a non-probabilistic proof of a theorem of Naor and Neiman that asserts that if (E, d) is a doubling metric space, there is an integer N > 0, depending only on the metric doubling constant, such that for each exponent α ∈ (1/2; 1), one can find a bilipschitz mapping F = (E; dα ) ⃗ ℝ RN.

A note on characteristic classes

Jianwei Zhou (2006)

Czechoslovak Mathematical Journal

This paper studies the relationship between the sections and the Chern or Pontrjagin classes of a vector bundle by the theory of connection. Our results are natural generalizations of the Gauss-Bonnet Theorem.

A note on conformal vector fields on a Riemannian manifold

Sharief Deshmukh, Falleh Al-Solamy (2014)

Colloquium Mathematicae

We consider an n-dimensional compact Riemannian manifold (M,g) and show that the presence of a non-Killing conformal vector field ξ on M that is also an eigenvector of the Laplacian operator acting on smooth vector fields with eigenvalue λ > 0, together with an upper bound on the energy of the vector field ξ, implies that M is isometric to the n-sphere Sⁿ(λ). We also introduce the notion of φ-analytic conformal vector fields, study their properties, and obtain a characterization of n-spheres...

A note on flat noncommutative connections

Tomasz Brzeziński (2012)

Banach Center Publications

It is proven that every flat connection or covariant derivative ∇ on a left A-module M (with respect to the universal differential calculus) induces a right A-module structure on M so that ∇ is a bimodule connection on M or M is a flat differentiable bimodule. Similarly a flat hom-connection on a right A-module M induces a compatible left A-action.

A note on generalized flag structures

Tomasz Rybicki (1998)

Annales Polonici Mathematici

Generalized flag structures occur naturally in modern geometry. By extending Stefan's well-known statement on generalized foliations we show that such structures admit distinguished charts. Several examples are included.

Currently displaying 221 – 240 of 5550