A note on smooth toral reductions of spheres.
We obtain nonexistence results concerning complete noncompact spacelike hypersurfaces with polynomial volume growth immersed in a Lorentzian space form, under the assumption that the support functions with respect to a fixed nonzero vector are linearly related. Our approach is based on a suitable maximum principle recently established by Alías, Caminha and do Nascimento [3].
We study the volume of compact Riemannian manifolds which are Einstein with respect to a metric connection with (parallel) skew-torsion. We provide a result for the sign of the first variation of the volume in terms of the corresponding scalar curvature. This generalizes a result of M. Ville [Vil] related with the first variation of the volume on a compact Einstein manifold.
We prove, for arbitrary dimension of the base n greater than or equal to 4, stationary Yang-Mills Fields satisfying Borne approximability property are regular apart from a closed subset of the base having zero (n-4)- Hausdorff measure.
Let M be an n-dimensional complete immersed submanifold with parallel mean curvature vectors in an (n+p)-dimensional Riemannian manifold N of constant curvature c > 0. Denote the square of length and the length of the trace of the second fundamental tensor of M by S and H, respectively. We prove that if S ≤ 1/(n-1) H² + 2c, n ≥ 4, or S ≤ 1/2 H² + min(2,(3p-3)/(2p-3))c, n = 3, then M is umbilical. This result generalizes the Okumura-Hasanis...
We obtain a pointwise inequality valid for all submanifolds of all real space forms with and with codimension two, relating its main scalar invariants, namely, its scalar curvature from the intrinsic geometry of , and its squared mean curvature and its scalar normal curvature from the extrinsic geometry of in .