Displaying 241 – 260 of 791

Showing per page

On irreducible, infinite, nonaffine Coxeter groups

Dongwen Qi (2007)

Fundamenta Mathematicae

The following results are proved: The center of any finite index subgroup of an irreducible, infinite, nonaffine Coxeter group is trivial; Any finite index subgroup of an irreducible, infinite, nonaffine Coxeter group cannot be expressed as a product of two nontrivial subgroups. These two theorems imply a unique decomposition theorem for a class of Coxeter groups. We also prove that the orbit of each element other than the identity under the conjugation action in an irreducible, infinite, nonaffine...

On isometries of the symmetric space P₁(3,ℝ)

Gašper Zadnik (2014)

Colloquium Mathematicae

We classify the isometries in the non-identity component of the whole isometry group of the symmetric space of positive 3 × 3 matrices of determinant 1: we determine the translation lengths, minimal spaces and fixed points at infinity.

On isotropic Berwald metrics

Akbar Tayebi, Behzad Najafi (2012)

Annales Polonici Mathematici

We prove that every isotropic Berwald metric of scalar flag curvature is a Randers metric. We study the relation between an isotropic Berwald metric and a Randers metric which are pointwise projectively related. We show that on constant isotropic Berwald manifolds the notions of R-quadratic and stretch metrics are equivalent. Then we prove that every complete generalized Landsberg manifold with isotropic Berwald curvature reduces to a Berwald manifold. Finally, we study C-conformal changes of isotropic...

On Jacobi fields and a canonical connection in sub-Riemannian geometry

Davide Barilari, Luca Rizzi (2017)

Archivum Mathematicum

In sub-Riemannian geometry the coefficients of the Jacobi equation define curvature-like invariants. We show that these coefficients can be interpreted as the curvature of a canonical Ehresmann connection associated to the metric, first introduced in [15]. We show why this connection is naturally nonlinear, and we discuss some of its properties.

On K-contact Riemannian manifolds with vanishing E-contact Bochner curvature tensor

Hiroshi Endo (1991)

Colloquium Mathematicae

For Sasakian manifolds, Matsumoto and Chūman [6] defined the contact Bochner curvature tensor (see also Yano [9]). Hasegawa and Nakane [4] and Ikawa and Kon [5] have studied Sasakian manifolds with vanishing contact Bochner curvature tensor. Such manifolds were studied in the theory of submanifolds by Yano ([9] and [10]). In this paper we define an extended contact Bochner curvature tensor in K-contact Riemannian manifolds and call it the E-contact Bochner curvature tensor. Then we show that a K-contact...

On left invariant CR structures on SU ( 2 )

Andreas Čap (2006)

Archivum Mathematicum

There is a well known one–parameter family of left invariant CR structures on S U ( 2 ) S 3 . We show how purely algebraic methods can be used to explicitly compute the canonical Cartan connections associated to these structures and their curvatures. We also obtain explicit descriptions of tractor bundles and tractor connections.

Currently displaying 241 – 260 of 791