Displaying 261 – 280 of 791

Showing per page

On Lie algebras of generators of infinitesimal symmetries of almost-cosymplectic-contact structures

Josef Janyška (2016)

Archivum Mathematicum

We study Lie algebras of generators of infinitesimal symmetries of almost-cosymplectic-contact structures of odd dimensional manifolds. The almost-cosymplectic-contact structure admits on the sheaf of pairs of 1-forms and functions the structure of a Lie algebra. We describe Lie subalgebras in this Lie algebra given by pairs generating infinitesimal symmetries of basic tensor fields given by the almost-cosymplectic-contact structure.

On Lie algebras of vector fields related to Riemannian foliations

Tomasz Rybicki (1993)

Annales Polonici Mathematici

Riemannian foliations constitute an important type of foliated structures. In this note we prove two theorems connecting the algebraic structure of Lie algebras of foliated vector fields with the smooth structure of a Riemannian foliation.

On local isometric immersions into complex and quaternionic projective spaces

Hans Jakob Rivertz (2011)

Archivum Mathematicum

We will prove that if an open subset of P n is isometrically immersed into P m , with m < ( 4 / 3 ) n - 2 / 3 , then the image is totally geodesic. We will also prove that if an open subset of P n isometrically immersed into P m , with m < ( 4 / 3 ) n - 5 / 6 , then the image is totally geodesic.

On localization in holomorphic equivariant cohomology

Ugo Bruzzo, Vladimir Rubtsov (2012)

Open Mathematics

We study a holomorphic equivariant cohomology built out of the Atiyah algebroid of an equivariant holomorphic vector bundle and prove a related localization formula. This encompasses various residue formulas in complex geometry, in particular we shall show that it contains as special cases Carrell-Liebermann’s and Feng-Ma’s residue formulas, and Baum-Bott’s formula for the zeroes of a meromorphic vector field.

On LP-Sasakian manifolds.

Shaikh, A.A., Biswas, Sudipta (2004)

Bulletin of the Malaysian Mathematical Sciences Society. Second Series

On manifolds with nonhomogeneous factors

Manuel Cárdenas, Francisco Lasheras, Antonio Quintero, Dušan Repovš (2012)

Open Mathematics

We present simple examples of finite-dimensional connected homogeneous spaces (they are actually topological manifolds) with nonhomogeneous and nonrigid factors. In particular, we give an elementary solution of an old problem in general topology concerning homogeneous spaces.

On metrics of positive Ricci curvature conformal to M × 𝐑 m

Juan Miguel Ruiz (2009)

Archivum Mathematicum

Let ( M n , g ) be a closed Riemannian manifold and g E the Euclidean metric. We show that for m > 1 , M n × 𝐑 m , ( g + g E ) is not conformal to a positive Einstein manifold. Moreover, M n × 𝐑 m , ( g + g E ) is not conformal to a Riemannian manifold of positive Ricci curvature, through a radial, integrable, smooth function, ϕ : 𝐑 𝐦 𝐑 + , for m > 1 . These results are motivated by some recent questions on Yamabe constants.

On minimal homothetical hypersurfaces

Lin Jiu, Huafei Sun (2007)

Colloquium Mathematicae

We give a classification of minimal homothetical hypersurfaces in an (n+1)-dimensional Euclidean space. In fact, when n ≥ 3, a minimal homothetical hypersurface is a hyperplane, a quadratic cone, a cylinder on a quadratic cone or a cylinder on a helicoid.

Currently displaying 261 – 280 of 791