Displaying 281 – 300 of 467

Showing per page

The structure of reachable sets for affine control systems induced by generalized Martinet sub-lorentzian metrics

Marek Grochowski (2012)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we investigate analytic affine control systems q ˙ q̇ = X + uY, u ∈  [a,b] , where X,Y is an orthonormal frame for a generalized Martinet sub-Lorentzian structure of order k of Hamiltonian type. We construct normal forms for such systems and, among other things, we study the connection between the presence of the singular trajectory starting at q0 on the boundary of the reachable set from q0 with the minimal number of analytic functions needed for describing the reachable set from q0.

The structure tensor and first order natural differential operators

Piotr Kobak (1992)

Archivum Mathematicum

The notion of a structure tensor of section of first order natural bundles with homogeneous standard fibre is introduced. Properties of the structure tensor operator are studied. The universal factorization property of the structure tensor operator is proved and used for classification of first order * -natural differential operators D ̲ : T × T ̲ T ̲ for n 3 .

The systolic constant of orientable Bieberbach 3-manifolds

Chady El Mir, Jacques Lafontaine (2013)

Annales de la faculté des sciences de Toulouse Mathématiques

A compact manifold is called Bieberbach if it carries a flat Riemannian metric. Bieberbach manifolds are aspherical, therefore the supremum of their systolic ratio, over the set of Riemannian metrics, is finite by a fundamental result of M. Gromov. We study the optimal systolic ratio of compact 3 -dimensional orientable Bieberbach manifolds which are not tori, and prove that it cannot be realized by a flat metric. We also highlight a metric that we construct on one type of such manifolds ( C 2 ) which...

The Tanaka-Webster connection for almost 𝒮 -manifolds and Cartan geometry

Antonio Lotta, Anna Maria Pastore (2004)

Archivum Mathematicum

We prove that a CR-integrable almost 𝒮 -manifold admits a canonical linear connection, which is a natural generalization of the Tanaka–Webster connection of a pseudo-hermitian structure on a strongly pseudoconvex CR manifold of hypersurface type. Hence a CR-integrable almost 𝒮 -structure on a manifold is canonically interpreted as a reductive Cartan geometry, which is torsion free if and only if the almost 𝒮 -structure is normal. Contrary to the CR-codimension one case, we exhibit examples of non normal...

Currently displaying 281 – 300 of 467