4-Dimensional (Para)-Kähler-Weyl Structures
This is a review of the relation between supersymmetric non-linear sigma models and target space geometry. In particular, we report on the derivation of generalized Kähler geometry from sigma models with additional spinorial superfields. Some of the results reviewed are: Generalized complex geometry from sigma models in the Lagrangian formulation; Coordinatization of generalized Kähler geometry in terms of chiral, twisted chiral and semi-chiral superfields; Generalized Kähler geometry from sigma...
We construct a canonically defined affine connection in sub-Riemannian contact geometry. Our method mimics that of the Levi-Civita connection in Riemannian geometry. We compare it with the Tanaka-Webster connection in the three-dimensional case.
We derive conditions under which a holomorphic mapping of a taut Riemann surface must be an automorphism. This is an analogue involving invariant distances of a result of H. Cartan. Using similar methods we prove an existence result for 1-dimensional holomorphic retracts in a taut complex manifold.
In a nonflat complex space form (namely, a complex projective space or a complex hyperbolic space), real hypersurfaces admit an almost contact metric structure induced from the ambient space. As a matter of course, many geometers have investigated real hypersurfaces in a nonflat complex space form from the viewpoint of almost contact metric geometry. On the other hand, it is known that the tensor field
In the class of real hypersurfaces isometrically immersed into a nonflat complex space form of constant holomorphic sectional curvature which is either a complex projective space or...