Canonical representation of tangent vectors of Grassmannians.
The purpose of this paper is to define transversal Cartan connection of Finsler foliation and to prove its existence and uniqueness.
We study the geometry of the second fundamental form of a Cauchy-Riemann submanifold of a Kaehlerian Finsler space M2n; any totally-real submanifold of M2n with v-flat normal connection is shown to be a Berwald-Cartan space.
This is mainly a survey on the theory of caustics and wave front propagations with applications to differential geometry of hypersurfaces in Euclidean space. We give a brief review of the general theory of caustics and wave front propagations, which are well-known now. We also consider a relationship between caustics and wave front propagations which might be new. Moreover, we apply this theory to differential geometry of hypersurfaces, getting new geometric properties.
We study certain contact metrics satisfying the Miao-Tam critical condition. First, we prove that a complete K-contact metric satisfying the Miao-Tam critical condition is isometric to the unit sphere . Next, we study (κ,μ)-contact metrics satisfying the Miao-Tam critical condition.
In this paper the Nijenhuis tensor characteristic distributions on a non-integrable four-dimensional almost complex manifold is investigated for integrability, singularities and equivalence.