Canonical representation of tangent vectors of Grassmannians.
Nikanorova, M.Yu. (2005)
Journal of Mathematical Sciences (New York)
Julien Duval (1991)
Inventiones mathematicae
Claude Viterbo (1988/1989)
Séminaire Bourbaki
Marc Arnaudon (1993)
Annales de l'I.H.P. Probabilités et statistiques
W. A. Kirk (1976)
Colloquium Mathematicae
Andrzej Miernowski (2012)
Annales UMCS, Mathematica
The purpose of this paper is to define transversal Cartan connection of Finsler foliation and to prove its existence and uniqueness.
Crampin, Michael (2009)
SIGMA. Symmetry, Integrability and Geometry: Methods and Applications [electronic only]
Paulette Libermann (2003)
Banach Center Publications
Sorin Dragomir (1989)
Collectanea Mathematica
We study the geometry of the second fundamental form of a Cauchy-Riemann submanifold of a Kaehlerian Finsler space M2n; any totally-real submanifold of M2n with v-flat normal connection is shown to be a Berwald-Cartan space.
R. Schimming (1984)
Banach Center Publications
Shyuichi Izumiya, Masatomo Takahashi (2008)
Banach Center Publications
This is mainly a survey on the theory of caustics and wave front propagations with applications to differential geometry of hypersurfaces in Euclidean space. We give a brief review of the general theory of caustics and wave front propagations, which are well-known now. We also consider a relationship between caustics and wave front propagations which might be new. Moreover, we apply this theory to differential geometry of hypersurfaces, getting new geometric properties.
Jean-Luc Brylinski (1997)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Kühnel, Wolfgang (1996)
Beiträge zur Algebra und Geometrie
Andrzej Derdziński (1978)
Colloquium Mathematicae
Dhriti Sundar Patra, Amalendu Ghosh (2016)
Annales Polonici Mathematici
We study certain contact metrics satisfying the Miao-Tam critical condition. First, we prove that a complete K-contact metric satisfying the Miao-Tam critical condition is isometric to the unit sphere . Next, we study (κ,μ)-contact metrics satisfying the Miao-Tam critical condition.
Zbigniew Olszak (1979)
Colloquium Mathematicae
Takashi Kameda, Seiichi Yamaguchi (1985)
Colloquium Mathematicae
Peter Sjögren (1981)
Mathematica Scandinavica
Robert Wolak (1987)
Colloquium Mathematicae
Boris S. Kruglikov (2003)
Banach Center Publications
In this paper the Nijenhuis tensor characteristic distributions on a non-integrable four-dimensional almost complex manifold is investigated for integrability, singularities and equivalence.