Symplectic structures and cohomologies on some solvmanifolds.
Given a symplectic fibration , with compact and symplectic and the fibres complex projective, we produce symplectic submanifolds of analytic in the vertical direction, and apply this to complex vector bundles on symplectic manifolds.
We introduce the symplectic twistor operator in symplectic spin geometry of real dimension two, as a symplectic analogue of the Dolbeault operator in complex spin geometry of complex dimension 1. Based on the techniques of the metaplectic Howe duality and algebraic Weyl algebra, we compute the space of its solutions on .
We prove a finiteness result for the systolic area of groups. Namely, we show that there are only finitely many possible unfree factors of fundamental groups of -complexes whose systolic area is uniformly bounded. We also show that the number of freely indecomposable such groups grows at least exponentially with the bound on the systolic area. Furthermore, we prove a uniform systolic inequality for all -complexes with unfree fundamental group that improves the previously known bounds in this dimension....