Displaying 541 – 560 of 575

Showing per page

Symmetries of connections on fibered manifolds

Alexandr Vondra (1994)

Archivum Mathematicum

The (infinitesimal) symmetries of first and second-order partial differential equations represented by connections on fibered manifolds are studied within the framework of certain “strong horizontal“ structures closely related to the equations in question. The classification and global description of the symmetries is presented by means of some natural compatible structures, eġḃy vertical prolongations of connections.

Symplectic connections with parallel Ricci tensor

Michel Cahen, Simone Gutt, John Rawnsley (2000)

Banach Center Publications

A variational principle introduced to select some symplectic connections leads to field equations which, in the case of the Levi Civita connection of Kähler manifolds, are equivalent to the condition that the Ricci tensor is parallel. This condition, which is stronger than the field equations, is studied in a purely symplectic framework.

Symplectic critical surfaces in Kähler surfaces

Xiaoli Han, Jiayu Li (2010)

Journal of the European Mathematical Society

Let M be a Kähler surface and Σ be a closed symplectic surface which is smoothly immersed in M . Let α be the Kähler angle of Σ in M . We first deduce the Euler-Lagrange equation of the functional L = Σ 1 cos α d μ in the class of symplectic surfaces. It is cos 3 α H = ( J ( J cos α ) ) , where H is the mean curvature vector of Σ in M , J is the complex structure compatible with the Kähler form ω in M , which is an elliptic equation. We call such a surface a symplectic critical surface. We show that, if M is a Kähler-Einstein surface with nonnegative...

Symplectic Killing spinors

Svatopluk Krýsl (2012)

Commentationes Mathematicae Universitatis Carolinae

Let ( M , ω ) be a symplectic manifold admitting a metaplectic structure (a symplectic analogue of the Riemannian spin structure) and a torsion-free symplectic connection . Symplectic Killing spinor fields for this structure are sections of the symplectic spinor bundle satisfying a certain first order partial differential equation and they are the main object of this paper. We derive a necessary condition which has to be satisfied by a symplectic Killing spinor field. Using this condition one may easily...

Symplectic spinor valued forms and invariant operators acting between them

Svatopluk Krýsl (2006)

Archivum Mathematicum

Exterior differential forms with values in the (Kostant’s) symplectic spinor bundle on a manifold with a given metaplectic structure are decomposed into invariant subspaces. Projections to these invariant subspaces of a covariant derivative associated to a torsion-free symplectic connection are described.

Currently displaying 541 – 560 of 575