On the principal bundles over a flag manifold.
We study the absolute continuity of the convolution of two orbital measures on the symmetric space SO₀(p,q)/SO(p)×SO(q), q > p. We prove sharp conditions on X,Y ∈ for the existence of the density of the convolution measure. This measure intervenes in the product formula for the spherical functions. We show that the sharp criterion developed for SO₀(p,q)/SO(p)×SO(q) also serves for the spaces SU(p,q)/S(U(p)×U(q)) and Sp(p,q)/Sp(p)×Sp(q), q > p. We moreover apply our results to the study of...
A. Rapcsák obtained necessary and sufficient conditions for the projective Finsler metrizability in terms of a second order partial differential system. In this paper we investigate the integrability of the Rapcsák system and the extended Rapcsák system, by using the Spencer version of the Cartan-Kähler theorem. We also consider the extended Rapcsák system completed with the curvature condition. We prove that in the non-isotropic case there is a nontrivial Spencer cohomology group in the sequences...
We deal with complete spacelike hypersurfaces immersed with constant mean curvature in a Lorentzian space form. Under the assumption that the support functions with respect to a fixed nonzero vector are linearly related, we prove that such a hypersurface must be either totally umbilical or isometric to a hyperbolic cylinder of the ambient space.
In this paper we study the real secondary classes of transversely holomorphic foliations. We define a homomorphism from the space of the real secondary classes to the space of the complex secondary classes that corresponds to forgetting the transverse holomorphic structure. By using this homomorphism we show, for example, the decomposition of the Godbillon-Vey class into the imaginary part of the Bott class and the first Chern class of the complex normal bundle of the foliation. We show also...
We determine the admissible forms for the Ricci operator of three-dimensional locally homogeneous Lorentzian manifolds.