Displaying 841 – 860 of 5550

Showing per page

Complete noncompact submanifolds with flat normal bundle

Hai-Ping Fu (2016)

Annales Polonici Mathematici

Let Mⁿ (n ≥ 3) be an n-dimensional complete super stable minimal submanifold in n + p with flat normal bundle. We prove that if the second fundamental form A of M satisfies M i | A | α < , where α ∈ [2(1 - √(2/n)), 2(1 + √(2/n))], then M is an affine n-dimensional plane. In particular, if n ≤ 8 and M | A | d < , d = 1,3, then M is an affine n-dimensional plane. Moreover, complete strongly stable hypersurfaces with constant mean curvature and finite L α -norm curvature in ℝ⁷ are considered.

Complete real Kähler Euclidean hypersurfaces are cylinders

Luis A. Florit, Fangyang Zheng (2007)

Annales de l’institut Fourier

In this note we show that any complete Kähler (immersed) Euclidean hypersurface M 2 n 2 n + 1 must be the product of a surface in 3 with an Euclidean factor n - 1 2 n - 2 .

Complete Riemannian manifolds admitting a pair of Einstein-Weyl structures

Amalendu Ghosh (2016)

Mathematica Bohemica

We prove that a connected Riemannian manifold admitting a pair of non-trivial Einstein-Weyl structures ( g , ± ω ) with constant scalar curvature is either Einstein, or the dual field of ω is Killing. Next, let ( M n , g ) be a complete and connected Riemannian manifold of dimension at least 3 admitting a pair of Einstein-Weyl structures ( g , ± ω ) . Then the Einstein-Weyl vector field E (dual to the 1 -form ω ) generates an infinitesimal harmonic transformation if and only if E is Killing.

Complete spacelike hypersurfaces with constant scalar curvature

Schi Chang Shu (2008)

Archivum Mathematicum

In this paper, we characterize the n -dimensional ( n 3 ) complete spacelike hypersurfaces M n in a de Sitter space S 1 n + 1 with constant scalar curvature and with two distinct principal curvatures one of which is simple.We show that M n is a locus of moving ( n - 1 ) -dimensional submanifold M 1 n - 1 ( s ) , along M 1 n - 1 ( s ) the principal curvature λ of multiplicity n - 1 is constant and M 1 n - 1 ( s ) is umbilical in S 1 n + 1 and is contained in an ( n - 1 ) -dimensional sphere S n - 1 ( c ( s ) ) = E n ( s ) S 1 n + 1 and is of constant curvature ( d { log | λ 2 - ( 1 - R ) | 1 / n } d s ) 2 - λ 2 + 1 ,where s is the arc length of an orthogonal trajectory of the family...

Complétude et flots nul-géodésibles en géométrie lorentzienne

Pierre Mounoud (2004)

Bulletin de la Société Mathématique de France

On étudie la complétude géodésique des flots nul-prégéodésiques sur les variétés lorentziennes compactes, ce qui donne une obstruction à être nul-géodésique. On montre que lorsque l’orthogonal du champ de vecteurs engendrant le flot considéré s’intègre en un feuilletage , la complétude du flot se lit sur l’holonomie de . On montre ainsi qu’il n’existe pas de flots nul-géodésiques lisses sur S 3 . On montre aussi qu’un 2 -tore lorentzien est nul-complet si et seulement si ses feuilletages de type lumière...

Complex geodesics and isometries in Cartan domains of type four

Edoardo Vesentini (1995)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Holomorphic maps of Cartan domains of type four preserving the supports of complex geodesics are characterized, providing, in particular, a new description of holomorphic isometries.

Currently displaying 841 – 860 of 5550