A compactification of a manifold with asymptotically nonnegative curvature
Atsushi Kasue (1988)
Annales scientifiques de l'École Normale Supérieure
Joel Langer (1985)
Mathematische Annalen
Bieske, Thomas (2007)
Electronic Journal of Differential Equations (EJDE) [electronic only]
Xianzhe Dai, Guofang Wei (1995)
Mathematische Annalen
W.M. Mikulski (2015)
Archivum Mathematicum
Giovanni Calvaruso (2015)
Complex Manifolds
We consider paraKähler Lie algebras, that is, even-dimensional Lie algebras g equipped with a pair (J, g), where J is a paracomplex structure and g a pseudo-Riemannian metric, such that the fundamental 2-form Ω(X, Y) = g(X, JY) is symplectic. A complete classification is obtained in dimension four.
Nobumitsu Nakauchi (1993)
Manuscripta mathematica
Sun-Yung A. Chang, Matthew J. Gursky, Paul C. Yang (2003)
Publications Mathématiques de l'IHÉS
Stephan Stolz (1996)
Mathematische Annalen
Lieven Vanhecke (1981)
Mathematische Zeitschrift
Kazimierz Cegiełka (1976)
Colloquium Mathematicae
Norio Ejiri (1979)
Mathematische Zeitschrift
Jan Gregorovič, Lenka Zalabová (2016)
Archivum Mathematicum
We construct series of examples of non-flat non-homogeneous parabolic geometries that carry a symmetry of the parabolic geometry at each point.
Szenthe, J. (2003)
Zeszyty Naukowe Uniwersytetu Jagiellońskiego. Universitatis Iagellonicae Acta Mathematica
Jong Taek Cho (1995)
Archivum Mathematicum
In the present paper we investigate a contact metric manifold satisfying (C) for any -geodesic , where is the Tanaka connection. We classify the 3-dimensional contact metric manifolds satisfying (C) for any -geodesic . Also, we prove a structure theorem for a contact metric manifold with belonging to the -nullity distribution and satisfying (C) for any -geodesic .
Yacine Chitour (2006)
ESAIM: Control, Optimisation and Calculus of Variations
We apply the well-known homotopy continuation method to address the motion planning problem (MPP) for smooth driftless control-affine systems. The homotopy continuation method is a Newton-type procedure to effectively determine functions only defined implicitly. That approach requires first to characterize the singularities of a surjective map and next to prove global existence for the solution of an ordinary differential equation, the Wazewski equation. In the context of the MPP, the aforementioned...
Yacine Chitour (2005)
ESAIM: Control, Optimisation and Calculus of Variations
We apply the well-known homotopy continuation method to address the motion planning problem (MPP) for smooth driftless control-affine systems. The homotopy continuation method is a Newton-type procedure to effectively determine functions only defined implicitly. That approach requires first to characterize the singularities of a surjective map and next to prove global existence for the solution of an ordinary differential equation, the Wazewski equation. In the context of the MPP, the aforementioned...
Oldřich Kowalski (1968)
Archivum Mathematicum
Peter Michor (1984)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Peter Michor (1984)
Cahiers de Topologie et Géométrie Différentielle Catégoriques