Displaying 81 – 100 of 205

Showing per page

Higher order Cartan connections

Juraj Virsik (1996)

Archivum Mathematicum

A Cartan connection associated with a pair P ( M , G ' ) P ( M , G ) is defined in the usual manner except that only the injectivity of ω : T ( P ' ) T ( G ) e is required. For an r -th order connection associated with a bundle morphism Φ : P ' P the concept of Cartan order q r is defined, which for q = r = 1 , Φ : P ' P , and dim M = dim G / G ' coincides with the classical definition. Results are obtained concerning the Cartan order of r -th order connections that are the product of r first order (Cartan) connections.

Higher order valued reduction theorems for classical connections

Josef Janyška (2005)

Open Mathematics

We generalize reduction theorems for classical connections to operators with values in k-th order natural bundles. Using the 2nd order valued reduction theorems we classify all (0,2)-tensor fields on the cotangent bundle of a manifold with a linear (non-symmetric) connection.

High-order angles in almost-Riemannian geometry

Ugo Boscain, Mario Sigalotti (2006/2007)

Séminaire de théorie spectrale et géométrie

Let X and Y be two smooth vector fields on a two-dimensional manifold M . If X and Y are everywhere linearly independent, then they define a Riemannian metric on M (the metric for which they are orthonormal) and they give to M the structure of metric space. If X and Y become linearly dependent somewhere on M , then the corresponding Riemannian metric has singularities, but under generic conditions the metric structure is still well defined. Metric structures that can be defined locally in this way...

Hilbert volume in metric spaces. Part 1

Misha Gromov (2012)

Open Mathematics

We introduce a notion of Hilbertian n-volume in metric spaces with Besicovitch-type inequalities built-in into the definitions. The present Part 1 of the article is, for the most part, dedicated to the reformulation of known results in our terms with proofs being reduced to (almost) pure tautologies. If there is any novelty in the paper, this is in forging certain terminology which, ultimately, may turn useful in an Alexandrov kind of approach to singular spaces with positive scalar curvature [Gromov...

Hodge theory for twisted differentials

Daniele Angella, Hisashi Kasuya (2014)

Complex Manifolds

We study cohomologies and Hodge theory for complex manifolds with twisted differentials. In particular, we get another cohomological obstruction for manifolds in class C of Fujiki. We give a Hodgetheoretical proof of the characterization of solvmanifolds in class C of Fujiki, first stated by D. Arapura.

Hodge type decomposition

Wojciech Kozłowski (2007)

Annales Polonici Mathematici

In the space Λ p of polynomial p-forms in ℝⁿ we introduce some special inner product. Let H p be the space of polynomial p-forms which are both closed and co-closed. We prove in a purely algebraic way that Λ p splits as the direct sum d * ( Λ p + 1 ) δ * ( Λ p - 1 ) H p , where d* (resp. δ*) denotes the adjoint operator to d (resp. δ) with respect to that inner product.

Hodge-Bott-Chern decompositions of mixed type forms on foliated Kähler manifolds

Cristian Ida (2014)

Colloquium Mathematicae

The Bott-Chern cohomology groups and the Bott-Chern Laplacian on differential forms of mixed type on a compact foliated Kähler manifold are defined and studied. Also, a Hodge decomposition theorem of Bott-Chern type for differential forms of mixed type is proved. Finally, the case of projectivized tangent bundle of a complex Finsler manifold is discussed.

Currently displaying 81 – 100 of 205