Displaying 61 – 80 of 84

Showing per page

On the geometric prequantization of brackets.

Manuel de León, Juan Carlos Marrero, Edith Padrón (2001)

RACSAM

En este artículo se considera un marco general para la precuantización geométrica de una variedad provista de un corchete que no es necesariamente de Jacobi. La existencia de una foliación generalizada permite definir una noción de fibrado de precuantización. Se estudia una aproximación alternativa suponiendo la existencia de un algebroide de Lie sobre la variedad. Se relacionan ambos enfoques y se recuperan los resultados conocidos para variedades de Poisson y Jacobi.

On the index theorem for symplectic orbifolds

Boris Fedosov, Bert-Wolfang Schulze, Nikolai Tarkhanov (2004)

Annales de l’institut Fourier

We give an explicit construction of the trace on the algebra of quantum observables on a symplectiv orbifold and propose an index formula.

On the linearization theorem for proper Lie groupoids

Marius Crainic, Ivan Struchiner (2013)

Annales scientifiques de l'École Normale Supérieure

We revisit the linearization theorems for proper Lie groupoids around general orbits (statements and proofs). In the fixed point case (known as Zung’s theorem) we give a shorter and more geometric proof, based on a Moser deformation argument. The passage to general orbits (Weinstein) is given a more conceptual interpretation: as a manifestation of Morita invariance. We also clarify the precise statements of the Linearization Theorem (there has been some confusion on this, which has propagated throughout...

On the normality of an almost contact 3 -structure on Q R -submanifolds

Shoichi Funabashi, Jin Suk Pak, Yang Jae Shin (2003)

Czechoslovak Mathematical Journal

We study n -dimensional Q R -submanifolds of Q R -dimension ( p - 1 ) immersed in a quaternionic space form Q P ( n + p ) / 4 ( c ) , c 0 , and, in particular, determine such submanifolds with the induced normal almost contact 3 -structure.

On topologically distinct infinite families of exact Lagrangian fillings

Roman Golovko (2022)

Archivum Mathematicum

In this note we construct examples of closed connected Legendrian submanifolds in high dimensional contact vector space that admit an arbitrary finite number of topologically distinct infinite families of diffeomorphic, but not Hamiltonian isotopic exact Lagrangian fillings.

On variants of Arnold conjecture

Roman Golovko (2020)

Archivum Mathematicum

In this note we discuss the collection of statements known as Arnold conjecture for Hamiltonian diffeomorphisms of closed symplectic manifolds. We provide an overview of the homological, stable and strong versions of Arnold conjecture for non-degenerate Hamiltonian systems, a few versions of Arnold conjecture for possibly degenerate Hamiltonian systems, the degenerate version of Arnold conjecture for Hamiltonian homeomorphisms and Sandon’s version of Arnold conjecture for contactomorphisms.

On weakly φ -symmetric Kenmotsu Manifolds

Shyamal Kumar Hui (2012)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

The object of the present paper is to study weakly φ -symmetric and weakly φ -Ricci symmetric Kenmotsu manifolds. It is shown that weakly φ -symmetric and weakly φ -Ricci symmetric Kenmotsu manifolds are η -Einstein.

One-dimensional infinitesimal-birational duality through differential operators

Tomasz Maszczyk (2006)

Fundamenta Mathematicae

The structure of filtered algebras of Grothendieck's differential operators on a smooth fat point in a curve and graded Poisson algebras of their principal symbols is explicitly determined. A related infinitesimal-birational duality realized by a Springer type resolution of singularities and the Fourier transformation is presented. This algebro-geometrical duality is quantized in appropriate sense and its quantum origin is explained.

Open books on contact five-manifolds

Otto van Koert (2008)

Annales de l’institut Fourier

By using open book techniques we give an alternative proof of a theorem about the existence of contact structures on five-manifolds due to Geiges. The theorem asserts that simply-connected five-manifolds admit a contact structure in every homotopy class of almost contact structures.

Currently displaying 61 – 80 of 84