A density property of the tori and duality
We construct a hereditary shape equivalence that raises transfinite inductive dimension from ω to ω+1. This shows that ind and Ind do not admit a geometric characterisation in the spirit of Alexandroff's Essential Mapping Theorem, answering a question asked by R. Pol.
We show that the Cartesian product of three hereditarily infinite-dimensional compact metric spaces is never hereditarily infinite-dimensional. It is quite surprising that the proof of this fact (and this is the only proof known to the author) essentially relies on algebraic topology.
In the first part of the paper, we define an approximated Brunn-Minkowski inequality which generalizes the classical one for metric measure spaces. Our new definition, based only on properties of the distance, allows also us to deal with discrete metric measure spaces. Then we show the stability of our new inequality under convergence of metric measure spaces. This result gives as corollary the stability of the classical Brunn-Minkowski inequality for geodesic spaces. The proof of this stability...
We prove a factorization theorem for transfinite kernel dimension in the class of metrizable spaces. Our result in conjunction with Pasynkov's technique implies the existence of a universal element in the class of metrizable spaces of given weight and transfinite kernel dimension, a result known from the work of Luxemburg and Olszewski.