The category of compact Hausdorff spaces is not algebraic if there are too many measurable cardinals
We define “the category of compactifications”, which is denoted CM, and consider its family of coreflections, denoted corCM. We show that corCM is a complete lattice with bottom the identity and top an interpretation of the Čech–Stone . A corCM implies the assignment to each locally compact, noncompact a compactification minimum for membership in the “object-range” of . We describe the minimum proper compactifications of locally compact, noncompact spaces, show that these generate the atoms...
A criterion for the existence of an initial completion of a concrete category universal w.r.tḟinite products and subobjects is presented. For metric spaces and uniformly continuous maps this completion is the category of uniform spaces.
In this paper, we discuss the approximation operators [...] apr¯NS and [...] apr¯S which are based on NS(U) and S. We not only obtain some properties of NS(U) and S, but also give examples to show some special properties. We also study sufficient and necessary conditions when they become closure operators. In addition, we give general and topological characterizations of the covering for two types of covering-based upper approximation operators being closure operators.
A homeomorphism h: X → X of a compactum X is expansive provided that for some fixed c > 0 and every x, y ∈ X (x ≠ y) there exists an integer n, dependent only on x and y, such that d(hⁿ(x),hⁿ(y)) > c. It is shown that if X is a solenoid that admits an expansive homeomorphism, then X is homeomorphic to a regular solenoid. It can then be concluded that a circle-like continuum admits an expansive homeomorphism if and only if it is homeomorphic to a regular solenoid.
We characterize clean elements of and show that is clean if and only if there exists a clopen sublocale in such that . Also, we prove that is clean if and only if has a clean prime ideal. Then, according to the results about we immediately get results about
In this paper we characterize the closures of arithmetic progressions in the topology T on the set of positive integers with the base consisting of arithmetic progressions {an + b} such that if the prime number p is a factor of a, then it is also a factor of b. The topology T is called the common division topology.
A topological space is totally Brown if for each and every nonempty open subsets of we have . Totally Brown spaces are connected. In this paper we consider a topology on the set of natural numbers. We then present properties of the topological space , some of them involve the closure of a set with respect to this topology, while others describe subsets which are either totally Brown or totally separated. Our theorems generalize results proved by P. Szczuka in 2013, 2014, 2016 and by...
We consider separable metrizable topological spaces. Among other things we prove that there exists a non-contractible space with the compact extension property and we prove a new version of realization of polytopes for ’s.