Displaying 61 – 80 of 674

Showing per page

The category of compactifications and its coreflections

Anthony W. Hager, Brian Wynne (2022)

Commentationes Mathematicae Universitatis Carolinae

We define “the category of compactifications”, which is denoted CM, and consider its family of coreflections, denoted corCM. We show that corCM is a complete lattice with bottom the identity and top an interpretation of the Čech–Stone β . A c corCM implies the assignment to each locally compact, noncompact Y a compactification minimum for membership in the “object-range” of c . We describe the minimum proper compactifications of locally compact, noncompact spaces, show that these generate the atoms...

The category of uniform spaces as a completion of the category of metric spaces

Jiří Adámek, Jan Reiterman (1992)

Commentationes Mathematicae Universitatis Carolinae

A criterion for the existence of an initial completion of a concrete category 𝐊 universal w.r.tḟinite products and subobjects is presented. For 𝐊 = metric spaces and uniformly continuous maps this completion is the category of uniform spaces.

The characterizations of upper approximation operators based on special coverings

Pei Wang, Qingguo Li (2017)

Open Mathematics

In this paper, we discuss the approximation operators [...] apr¯NS a p r ¯ N S and [...] apr¯S a p r ¯ S which are based on NS(U) and S. We not only obtain some properties of NS(U) and S, but also give examples to show some special properties. We also study sufficient and necessary conditions when they become closure operators. In addition, we give general and topological characterizations of the covering for two types of covering-based upper approximation operators being closure operators.

The classification of circle-like continua that admit expansive homeomorphisms

Christopher Mouron (2011)

Fundamenta Mathematicae

A homeomorphism h: X → X of a compactum X is expansive provided that for some fixed c > 0 and every x, y ∈ X (x ≠ y) there exists an integer n, dependent only on x and y, such that d(hⁿ(x),hⁿ(y)) > c. It is shown that if X is a solenoid that admits an expansive homeomorphism, then X is homeomorphic to a regular solenoid. It can then be concluded that a circle-like continuum admits an expansive homeomorphism if and only if it is homeomorphic to a regular solenoid.

The clean elements of the ring ( L )

Ali Akbar Estaji, Maryam Taha (2024)

Czechoslovak Mathematical Journal

We characterize clean elements of ( L ) and show that α ( L ) is clean if and only if there exists a clopen sublocale U in L such that 𝔠 L ( coz ( α - 1 ) ) U 𝔬 L ( coz ( α ) ) . Also, we prove that ( L ) is clean if and only if ( L ) has a clean prime ideal. Then, according to the results about ( L ) , we immediately get results about 𝒞 c ( L ) .

The common division topology on

José del Carmen Alberto-Domínguez, Gerardo Acosta, Maira Madriz-Mendoza (2022)

Commentationes Mathematicae Universitatis Carolinae

A topological space X is totally Brown if for each n { 1 } and every nonempty open subsets U 1 , U 2 , ... , U n of X we have cl X ( U 1 ) cl X ( U 2 ) cl X ( U n ) . Totally Brown spaces are connected. In this paper we consider a topology τ S on the set of natural numbers. We then present properties of the topological space ( , τ S ) , some of them involve the closure of a set with respect to this topology, while others describe subsets which are either totally Brown or totally separated. Our theorems generalize results proved by P. Szczuka in 2013, 2014, 2016 and by...

The compact extension property: the role of compactness

Jos Bijl, Jan van Mill (1991)

Commentationes Mathematicae Universitatis Carolinae

We consider separable metrizable topological spaces. Among other things we prove that there exists a non-contractible space with the compact extension property and we prove a new version of realization of polytopes for ANR ’s.

Currently displaying 61 – 80 of 674