Sur les fonctions vectorielles approximativement continues
M. Steinberger et J. West ont prouvé dans [7] qu’un fibré de Serre p:E → B entre CW-complexes a la propriété de relèvement des homotopies par rapport aux k-espaces. Malheureusement, leur démonstration contient une légère erreur. Ils affirment que certains ensembles (notés U et ) sont des CW-complexes car ce sont des ouverts de CW-complexes. Ceci est généralement faux, et notre premier objectif dans cette note est de donner des exemples d’ouverts de CW-complexes n’admettant aucune décomposition...
We prove that a k-dimensional hereditarily indecomposable metrisable continuum is not a -valued absolute retract. We deduce from this that none of the classical characterizations of ANR (metric) extends to the class of stratifiable spaces.
Let X and Y be metric compacta such that there exists a continuous open surjection from onto . We prove that if there exists an integer k such that is strongly infinite-dimensional, then there exists an integer p such that is strongly infinite-dimensional.
For A ⊂ I = [0,1], let be the set of continuous real-valued functions on I which vanish on a neighborhood of A. We prove that if A is an analytic subset which is not an and whose closure has an empty interior, then is homeomorphic to the space of differentiable functions from I into ℝ.