Sur une version algébrique de la notion de sous-groupe minimal relatif de
In this paper, we propose the concept of Suzuki type fuzzy -contractive mappings, which is a generalization of Fuzzy -contractive mappings initiated in the article [S. Shukla, D. Gopal, W. Sintunavarat, A new class of fuzzy contractive mappings and fixed point theorems, Fuzzy Sets and Systems 350 (2018)85-95]. For this type of contractions suitable conditions are framed to ensure the existence of fixed point in -complete as well as -complete fuzzy metric spaces. A comprehensive set of examples...
An -ring is an SV -ring if for every minimal prime -ideal of , is a valuation domain. A topological space is an SV space if is an SV -ring. SV -rings and spaces were introduced in [HW1], [HW2]. Since then a number of articles on SV -rings and spaces and on related -rings and spaces have appeared. This article surveys what is known about these -rings and spaces and introduces a number of new results that help to clarify the relationship between SV -rings and spaces and related...
We consider the compact plane sets known as Swiss cheese sets, which are a useful source of examples in the theory of uniform algebras and rational approximation. We develop a theory of allocation maps connected to such sets and we use this theory to modify examples previously constructed in the literature to obtain examples homeomorphic to the Sierpiński carpet. Our techniques also allow us to avoid certain technical difficulties in the literature.
By , , we denote the -th symmetric product of a metric space as the space of the non-empty finite subsets of with at most elements endowed with the Hausdorff metric . In this paper we shall describe that every isometry from the -th symmetric product into itself is induced by some isometry from into itself, where is either the Euclidean space or the sphere with the usual metrics. Moreover, we study the -th symmetric product of the Euclidean space up to bi-Lipschitz equivalence and...
Let X be a locally compact, separable metric space. We prove that , where and stand for the concentration dimension and the topological dimension of X, respectively.