Displaying 121 – 140 of 188

Showing per page

Invariant metrics on G -spaces

Bogusław Hajduk, Rafał Walczak (2003)

Czechoslovak Mathematical Journal

Let X be a G -space such that the orbit space X / G is metrizable. Suppose a family of slices is given at each point of X . We study a construction which associates, under some conditions on the family of slices, with any metric on X / G an invariant metric on X . We show also that a family of slices with the required properties exists for any action of a countable group on a locally compact and locally connected metric space.

Invariant scrambled sets and maximal distributional chaos

Xinxing Wu, Peiyong Zhu (2013)

Annales Polonici Mathematici

For the full shift (Σ₂,σ) on two symbols, we construct an invariant distributionally ϵ-scrambled set for all 0 < ϵ < diam Σ₂ in which each point is transitive, but not weakly almost periodic.

Invariant sets and Knaster-Tarski principle

Krzysztof Leśniak (2012)

Open Mathematics

Our aim is to point out the applicability of the Knaster-Tarski fixed point principle to the problem of existence of invariant sets in discrete-time (multivalued) semi-dynamical systems, especially iterated function systems.

Inverse limit of M -cocycles and applications

Jan Kwiatkowski (1998)

Fundamenta Mathematicae

For any m, 2 ≤ m < ∞, we construct an ergodic dynamical system having spectral multiplicity m and infinite rank. Given r > 1, 0 < b < 1 such that rb > 1 we construct a dynamical system (X, B, μ, T) with simple spectrum such that r(T) = r, F*(T) = b, and C ( T ) / w c l T n : n =

Inverse limit spaces of post-critically finite tent maps

Henk Bruin (2000)

Fundamenta Mathematicae

Let (I,T) be the inverse limit space of a post-critically finite tent map. Conditions are given under which these inverse limit spaces are pairwise nonhomeomorphic. This extends results of Barge & Diamond [2].

Inverse Limit Spaces Satisfying a Poincaré Inequality

Jeff Cheeger, Bruce Kleiner (2015)

Analysis and Geometry in Metric Spaces

We give conditions on Gromov-Hausdorff convergent inverse systems of metric measure graphs which imply that the measured Gromov-Hausdorff limit (equivalently, the inverse limit) is a PI space i.e., it satisfies a doubling condition and a Poincaré inequality in the sense of Heinonen-Koskela [12]. The Poincaré inequality is actually of type (1, 1). We also give a systematic construction of examples for which our conditions are satisfied. Included are known examples of PI spaces, such as Laakso spaces,...

Inverse Limits, Economics, and Backward Dynamics.

Judy Kennedy (2008)

RACSAM

We survey recent papers on the problem of backward dynamics in economics, providing along the way a glimpse at the economics perspective, a discussion of the economic models and mathematical tools involved, and a list of applicable literature in both mathematics and economics.

Inverse limits of tentlike maps on trees

Stewart Baldwin (2010)

Fundamenta Mathematicae

We investigate generalizations of Ingram's Conjecture involving maps on trees. We show that for a class of tentlike maps on the k-star with periodic critical orbit, different maps in the class have distinct inverse limit spaces. We do this by showing that such maps satisfy the conclusion of the Pseudo-isotopy Conjecture, i.e., if h is a homeomorphism of the inverse limit space, then there is an integer N such that h and σ̂^N switch composants in the same way, where σ̂ is the standard shift map of...

Inverse limits on intervals using unimodal bonding maps having only periodic points whose periods are all the powers of two

W. Ingram, Robert Roe (1999)

Colloquium Mathematicae

We derive several properties of unimodal maps having only periodic points whose period is a power of 2. We then consider inverse limits on intervals using a single strongly unimodal bonding map having periodic points whose only periods are all the powers of 2. One such mapping is the logistic map, f λ ( x ) = 4λx(1-x) on [f(λ),λ], at the Feigenbaum limit, λ ≈ 0.89249. It is known that this map produces an hereditarily decomposable inverse limit with only three topologically different subcontinua. Other...

Inverse Sequences and Absolute Co-Extensors

Ivan Ivanšić, Leonard R. Rubin (2007)

Bulletin of the Polish Academy of Sciences. Mathematics

Suppose that K is a CW-complex, X is an inverse sequence of stratifiable spaces, and X = limX. Using the concept of semi-sequence, we provide a necessary and sufficient condition for X to be an absolute co-extensor for K in terms of the inverse sequence X and without recourse to any specific properties of its limit. To say that X is an absolute co-extensor for K is the same as saying that K is an absolute extensor for X, i.e., that each map f:A → K from a closed subset A of X extends to a map F:X...

Inverse sequences with proper bonding maps

Tomás Fernández-Bayort, Antonio Quintero (2010)

Colloquium Mathematicae

Some topological properties of inverse limits of sequences with proper bonding maps are studied. We show that (non-empty) limits of euclidean half-lines are one-ended generalized continua. We also prove the non-existence of a universal object for such limits with respect to closed embeddings. A further result states that limits of end-preserving sequences of euclidean lines are two-ended generalized continua.

Currently displaying 121 – 140 of 188