Displaying 1661 – 1680 of 1977

Showing per page

The category of compactifications and its coreflections

Anthony W. Hager, Brian Wynne (2022)

Commentationes Mathematicae Universitatis Carolinae

We define “the category of compactifications”, which is denoted CM, and consider its family of coreflections, denoted corCM. We show that corCM is a complete lattice with bottom the identity and top an interpretation of the Čech–Stone β . A c corCM implies the assignment to each locally compact, noncompact Y a compactification minimum for membership in the “object-range” of c . We describe the minimum proper compactifications of locally compact, noncompact spaces, show that these generate the atoms...

The common division topology on

José del Carmen Alberto-Domínguez, Gerardo Acosta, Maira Madriz-Mendoza (2022)

Commentationes Mathematicae Universitatis Carolinae

A topological space X is totally Brown if for each n { 1 } and every nonempty open subsets U 1 , U 2 , ... , U n of X we have cl X ( U 1 ) cl X ( U 2 ) cl X ( U n ) . Totally Brown spaces are connected. In this paper we consider a topology τ S on the set of natural numbers. We then present properties of the topological space ( , τ S ) , some of them involve the closure of a set with respect to this topology, while others describe subsets which are either totally Brown or totally separated. Our theorems generalize results proved by P. Szczuka in 2013, 2014, 2016 and by...

The controlled separable projection property for Banach spaces

Jesús Ferrer, Marek Wójtowicz (2011)

Open Mathematics

Let X, Y be two Banach spaces. We say that Y is a quasi-quotient of X if there is a continuous operator R: X → Y such that its range, R(X), is dense in Y. Let X be a nonseparable Banach space, and let U, W be closed subspaces of X and Y, respectively. We prove that if X has the Controlled Separable Projection Property (CSPP) (this is a weaker notion than the WCG property) and Y is a quasi-quotient of X, then the structure of Y resembles the structure of a separable Banach space: (a) Y/W is norm-separable...

The covering property for σ-ideals of compact, sets

Carlos Uzcátegui (1992)

Fundamenta Mathematicae

The covering property for σ-ideals of compact sets is an abstract version of the classical perfect set theorem for analytic sets. We will study its consequences using as a paradigm the σ-ideal of countable closed subsets of 2 ω .

The (dis)connectedness of products of Hausdorff spaces in the box topology

Vitalij A. Chatyrko (2021)

Commentationes Mathematicae Universitatis Carolinae

In this paper the following two propositions are proved: (a) If X α , α A , is an infinite system of connected spaces such that infinitely many of them are nondegenerated completely Hausdorff topological spaces then the box product α A X α can be decomposed into continuum many disjoint nonempty open subsets, in particular, it is disconnected. (b) If X α , α A , is an infinite system of Brown Hausdorff topological spaces then the box product α A X α is also Brown Hausdorff, and hence, it is connected. A space is Brown if...

The dual group of a dense subgroup

William Wistar Comfort, S. U. Raczkowski, F. Javier Trigos-Arrieta (2004)

Czechoslovak Mathematical Journal

Throughout this abstract, G is a topological Abelian group and G ^ is the space of continuous homomorphisms from G into the circle group 𝕋 in the compact-open topology. A dense subgroup D of G is said to determine G if the (necessarily continuous) surjective isomorphism G ^ D ^ given by h h | D is a homeomorphism, and G is determined if each dense subgroup of G determines G . The principal result in this area, obtained independently by L. Außenhofer and M. J. Chasco, is the following: Every metrizable group is...

The Dugundji extension property can fail in ωµ -metrizable spaces

Ian Stares, Jerry Vaughan (1996)

Fundamenta Mathematicae

We show that there exist ω μ -metrizable spaces which do not have the Dugundji extension property ( 2 ω 1 with the countable box topology is such a space). This answers a question posed by the second author in 1972, and shows that certain results of van Douwen and Borges are false.

Currently displaying 1661 – 1680 of 1977