Real cohomology groups of the space of nonsingular curves of degree 5 in
Un “théorème des résidus” est donné, qui exprime les classes caractéristiques réelles de dimension d’un fibré principal à l’aide d’une connexion définie seulement au-dessus d’un voisinage du -squelette d’une triangulation de la base. Ce théorème coiffe simultanément la théorie de Chern-Weil, la théorie de l’obstruction modulo torsion, ainsi que des formules du type Riemann-Hurwitz pour les revêtements ramifiés.
Une formule de résidus est demontrée pour les classes caractéristiques de degré suffisamment grand du fibré normal à une sous variété lisse d’une variété , invariante relativement à un feuilletage avec singularités dans . En particulier, dans le cas analytique complexe, et pour les feuilletages dont les feuilles sont de dimension complexe 1, les nombres de Chern du fibre normal à la sous-variété sont calculés en termes de résidus de Grothendieck, par une formule qui généralise au cas de dimensions...
We describe partial semi-simplicial resolutions of moduli spaces of surfaces with tangential structure. This allows us to prove a homological stability theorem for these moduli spaces, which often improves the known stability ranges and gives explicit stability ranges in many new cases. In each of these cases the stable homology can be identified using the methods of Galatius, Madsen, Tillmann and Weiss.
The aim of this short survey is to give a quick introduction to the Salvetti complex as a tool for the study of the cohomology of Artin groups. In particular we show how a spectral sequence induced by a filtration on the complex provides a very natural and useful method to study recursively the cohomology of Artin groups, simplifying many computations. In the last section some examples of applications are presented.
We consider cohomology defined by a system of local Lagrangian and investigate under which conditions the variational Lie derivative of associated local currents is a system of conserved currents. The answer to such a question involves Jacobi equations for the local system. Furthermore, we recall that it was shown by Krupka et al. that the invariance of a closed Helmholtz form of a dynamical form is equivalent with local variationality of the Lie derivative of the dynamical form; we remark that...