Displaying 81 – 100 of 153

Showing per page

Géométrie réelle des dessins d’enfant

Layla Pharamond dit d’Costa (2004)

Journal de Théorie des Nombres de Bordeaux

À tout dessin d’enfant est associé un revêtement ramifié de la droite projective complexe P 1 , non ramifié en dehors de 0, 1 et l’infini. Cet article a pour but de décrire la structure algébrique de l’image réciproque de la droite projective réelle par ce revêtement, en termes de la combinatoire du dessin d’enfant. Sont rappelées en annexe les propriétés de la restriction de Weil et des dessins d’enfants utilisées.

Géométries modèles de dimension trois

Yves de Cornulier (2008/2009)

Séminaire de théorie spectrale et géométrie

On expose une preuve détaillée de la classification par Thurston des huit géométries modèles de dimension trois.

Geometrization of three manifolds and Perelman's proof.

Joan Porti (2008)

RACSAM

This is a survey about Thurston’s geometrization conjecture of three manifolds and Perelman’s proof with the Ricci flow. In particular we review the essential contribution of Hamilton as well as some results in topology relevants for the proof.

Geometry and representation of the singular symplectic forms

Wojciech Domitrz, Stanisław Janeczko, Zbigniew Pasternak-Winiarski (2003)

Banach Center Publications

In this paper we show to what extent the closed, singular 2-forms are represented, up to the smooth equivalence, by their restrictions to the corresponding singularity set. In the normalization procedure of the singularity set we find the sufficient conditions for the given closed 2-form to be a pullback of the classical Darboux form. We also find the classification list of simple singularities of the maximal isotropic submanifold-germs in the codimension one Martinet's singular symplectic structures....

Geometry of Cyclic and Anticylic Algebras

Igor M. Burlakov, Marek Jukl (2016)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

The article deals with spaces the geometry of which is defined by cyclic and anticyclic algebras. Arbitrary multiplicative function is taken as a fundamental form. Motions are given as linear transformation preserving given multiplicative function.

Geometry of fluid motion

Boris Khesin (2002/2003)

Séminaire Équations aux dérivées partielles

We survey two problems illustrating geometric-topological and Hamiltonian methods in fluid mechanics: energy relaxation of a magnetic field and conservation laws for ideal fluid motion. More details and results, as well as a guide to the literature on these topics can be found in [3].

Geometry of Markov systems and codimension one foliations

Andrzej Biś, Mariusz Urbański (2008)

Annales Polonici Mathematici

We show that the theory of graph directed Markov systems can be used to study exceptional minimal sets of some foliated manifolds. A C¹ smooth embedding of a contracting or parabolic Markov system into the holonomy pseudogroup of a codimension one foliation allows us to describe in detail the h-dimensional Hausdorff and packing measures of the intersection of a complete transversal with exceptional minimal sets.

Currently displaying 81 – 100 of 153