Displaying 681 – 700 of 1631

Showing per page

Isometries of systolic spaces

Tomasz Elsner (2009)

Fundamenta Mathematicae

We provide a classification of isometries of systolic complexes corresponding to the classification of isometries of CAT(0)-spaces. We prove that any isometry of a systolic complex either fixes the barycentre of some simplex (elliptic case) or stabilizes a thick geodesic (hyperbolic case). This leads to an alternative proof of the fact that finitely generated abelian subgroups of systolic groups are undistorted.

Jones polynomials, volume and essential knot surfaces: a survey

David Futer, Efstratia Kalfagianni, Jessica S. Purcell (2014)

Banach Center Publications

This paper is a brief overview of recent results by the authors relating colored Jones polynomials to geometric topology. The proofs of these results appear in the papers [18, 19], while this survey focuses on the main ideas and examples.

K ( π , 1 ) conjecture for Artin groups

Luis Paris (2014)

Annales de la faculté des sciences de Toulouse Mathématiques

The purpose of this paper is to put together a large amount of results on the K ( π , 1 ) conjecture for Artin groups, and to make them accessible to non-experts. Firstly, this is a survey, containing basic definitions, the main results, examples and an historical overview of the subject. But, it is also a reference text on the topic that contains proofs of a large part of the results on this question. Some proofs as well as few results are new. Furthermore, the text, being addressed to non-experts, is as...

Khovanov homology, its definitions and ramifications

Oleg Viro (2004)

Fundamenta Mathematicae

Mikhail Khovanov defined, for a diagram of an oriented classical link, a collection of groups labelled by pairs of integers. These groups were constructed as the homology groups of certain chain complexes. The Euler characteristics of these complexes are the coefficients of the Jones polynomial of the link. The original construction is overloaded with algebraic details. Most of the specialists use adaptations of it stripped off the details. The goal of this paper is to overview these adaptations...

Khovanov-Rozansky homology for embedded graphs

Emmanuel Wagner (2011)

Fundamenta Mathematicae

For any positive integer n, Khovanov and Rozansky constructed a bigraded link homology from which you can recover the 𝔰𝔩ₙ link polynomial invariants. We generalize the Khovanov-Rozansky construction in the case of finite 4-valent graphs embedded in a ball B³ ⊂ ℝ³. More precisely, we prove that the homology associated to a diagram of a 4-valent graph embedded in B³ ⊂ ℝ³ is invariant under the graph moves introduced by Kauffman.

Knot manifolds with isomorphic spines

Alberto Cavicchioli, Friedrich Hegenbarth (1994)

Fundamenta Mathematicae

We study the relation between the concept of spine and the representation of orientable bordered 3-manifolds by Heegaard diagrams. As a consequence, we show that composing invertible non-amphicheiral knots yields examples of topologically different knot manifolds with isomorphic spines. These results are related to some questions listed in [9], [11] and recover the main theorem of [10] as a corollary. Finally, an application concerning knot manifolds of composite knots with h prime factors completes...

Currently displaying 681 – 700 of 1631