A model for the universal space for proper actions of a hyperbolic group.
The purpose of this paper is to introduce a new proof of Markov's braid theorem, in terms of Seifert circles and Reidemeister moves. This means that the proof will be of combinatorial and essentially 2-dimensional nature. One characteristic feature of our approach is that nowhere in the proof will we use or refer to the braid axis. This allows for greater flexibility in various transformations of the diagrams considered. Other proofs of Markov's theorem can be found in [2], [3], [4] and [5].
We construct a locally compact 2-dimensional polyhedron X which does not admit a 𝒵-compactification, but which becomes 𝒵-compactifiable upon crossing with the Hilbert cube. This answers a long-standing question posed by Chapman and Siebenmann in 1976 and repeated in the 1976, 1979 and 1990 versions of Open Problems in Infinite-Dimensional Topology. Our solution corrects an error in the 1990 problem list.