The side-pairing elements of Maskit's fundamental domain for the modular group in genus two.
Griffiths, David (2001)
Annales Academiae Scientiarum Fennicae. Mathematica
J. Roitberg (1977)
Inventiones mathematicae
King, Simon A. (2001)
Geometry & Topology
Yoshiyuki Yokata (1991)
Mathematische Annalen
Vicente Muñoz (2009)
Revista Matemática Complutense
A. M. Oller-marcén (2008)
Extracta Mathematicae
Livingston, Charles (2002)
Algebraic & Geometric Topology
Everitt, Brent, Ratcliffe, John, Tschantz, Steven (2005)
Electronic Research Announcements of the American Mathematical Society [electronic only]
Jun Li (1993)
Manuscripta mathematica
Taubes, Clifford Henry (1998)
Geometry & Topology
Dunfield, Nathan M., Gukov, Sergei, Rasmussen, Jacob (2006)
Experimental Mathematics
Cohen, Marshall M., Rourke, Colin (2001)
Geometry & Topology
Scott, Peter (1998)
Geometry & Topology
Chady El Mir, Jacques Lafontaine (2013)
Annales de la faculté des sciences de Toulouse Mathématiques
A compact manifold is called Bieberbach if it carries a flat Riemannian metric. Bieberbach manifolds are aspherical, therefore the supremum of their systolic ratio, over the set of Riemannian metrics, is finite by a fundamental result of M. Gromov. We study the optimal systolic ratio of compact -dimensional orientable Bieberbach manifolds which are not tori, and prove that it cannot be realized by a flat metric. We also highlight a metric that we construct on one type of such manifolds () which...
V. Poenaru (1977)
Δελτίο της Ελληνικής Μαθηματικής Εταιρίας
Bestvina, Mladen, Feighn, Mark, Handel, Michael (2000)
Annals of Mathematics. Second Series
Fabel, Paul (2005)
Algebraic & Geometric Topology
Anderson, James W., Canary, Richard D., McCullough, Darryl (2000)
Annals of Mathematics. Second Series
Benedetto, Robert L., Goldman, William M. (1999)
Experimental Mathematics
Chernov, Vladimir (2003)
Algebraic & Geometric Topology