Bernstein Theorems for Harmonic Morphisms from R3 and S3.
We define the concept of a bi-Legendrian connection associated to a bi-Legendrian structure on an almost -manifold . Among other things, we compute the torsion of this connection and prove that the curvature vanishes along the leaves of the bi-Legendrian structure. Moreover, we prove that if the bi-Legendrian connection is flat, then the bi-Legendrian structure is locally equivalent to the standard structure on .
Laminations are classic sets of disjoint and non-self-crossing curves on surfaces. Lamination languages are languages of two-way infinite words which code laminations by using associated labeled embedded graphs, and which are subshifts. Here, we characterize the possible exact affine factor complexities of these languages through bouquets of circles, i.e. graphs made of one vertex, as representative coding graphs. We also show how to build families of laminations together with corresponding lamination...