A class of tight contact structures on .
We show that the action of the mapping class group on bordered Floer homology in the second to extremal spin-structure is faithful. This paper is designed partly as an introduction to the subject, and much of it should be readable without a background in Floer homology.
A Fatou-Julia decomposition of transversally holomorphic foliations of complex codimension one was given by Ghys, Gomez-Mont and Saludes. In this paper, we propose another decomposition in terms of normal families. Two decompositions have common properties as well as certain differences. It will be shown that the Fatou sets in our sense always contain the Fatou sets in the sense of Ghys, Gomez-Mont and Saludes and the inclusion is strict in some examples. This property is important when discussing...
The space of the closures of leaves of a Riemannian foliation is a nice topological space, a stratified singular space which can be topologically embedded in for k sufficiently large. In the case of Orbit Like Foliations (OLF) the smooth structure induced by the embedding and the smooth structure defined by basic functions is the same. We study geometric structures adapted to the foliation and present conditions which assure that the given structure descends to the leaf closure space. In Section...
Given some geometric bounds for the base space and the fibres, there is a finite number of conjugacy classes of Riemannian submersions between compact Riemannian manifolds.