A correction to a paper of H. King.
We show that the action of the mapping class group on bordered Floer homology in the second to extremal spin-structure is faithful. This paper is designed partly as an introduction to the subject, and much of it should be readable without a background in Floer homology.
A Fatou-Julia decomposition of transversally holomorphic foliations of complex codimension one was given by Ghys, Gomez-Mont and Saludes. In this paper, we propose another decomposition in terms of normal families. Two decompositions have common properties as well as certain differences. It will be shown that the Fatou sets in our sense always contain the Fatou sets in the sense of Ghys, Gomez-Mont and Saludes and the inclusion is strict in some examples. This property is important when discussing...
The space of the closures of leaves of a Riemannian foliation is a nice topological space, a stratified singular space which can be topologically embedded in for k sufficiently large. In the case of Orbit Like Foliations (OLF) the smooth structure induced by the embedding and the smooth structure defined by basic functions is the same. We study geometric structures adapted to the foliation and present conditions which assure that the given structure descends to the leaf closure space. In Section...
Given some geometric bounds for the base space and the fibres, there is a finite number of conjugacy classes of Riemannian submersions between compact Riemannian manifolds.
An approach to construction of topological invariants of the Reshetikhin-Turaev-Witten type of 3- and 4-dimensional manifolds in the framework of SU(2) Chern-Simons gauge theory and its hidden (quantum) gauge symmetry is presented.
In this paper we aim for a generalization of the Steenrod Approximation Theorem from [16, Section 6.7], concerning a smoothing procedure for sections in smooth locally trivial bundles. The generalization is that we consider locally trivial smooth bundles with a possibly infinite-dimensional typical fibre. The main result states that a continuous section in a smooth locally trivial bundles can always be smoothed out in a very controlled way (in terms of the graph topology on spaces of continuous...
We prove a generalization of Thom’s transversality theorem. It gives conditions under which the jet map is generically (for ) transverse to a submanifold . We apply this to study transversality properties of a restriction of a fixed map to the preimage of a submanifold in terms of transversality properties of the original map . Our main result is that for a reasonable class of submanifolds and a generic map the restriction is also generic. We also present an example of where the...