Displaying 1501 – 1520 of 2026

Showing per page

Smoothability of proper foliations

John Cantwell, Lawrence Conlon (1988)

Annales de l'institut Fourier

Compact, C 2 -foliated manifolds of codimension one, having all leaves proper, are shown to be C -smoothable. More precisely, such a foliated manifold is homeomorphic to one of class C . The corresponding statement is false for foliations with nonproper leaves. In that case, there are topological distinctions between smoothness of class C r and of class C r + 1 for every nonnegative integer r .

Smoothing of real algebraic hypersurfaces by rigid isotopies

Alexander Nabutovsky (1991)

Annales de l'institut Fourier

Define for a smooth compact hypersurface M n of R n + 1 its crumpleness κ ( M n ) as the ratio diam R n + 1 ( M n ) / r ( M n ) , where r ( M n ) is the distance from M n to its central set. (In other words, r ( M n ) is the maximal radius of an open non-selfintersecting tube around M n in R n + 1 . ) We prove that any n -dimensional non-singular compact algebraic hypersurface of degree d is rigidly isotopic to an algebraic hypersurface of degree d and of crumpleness exp ( c ( n ) d α ( n ) d n + 1 ) . Here c ( n ) , α ( n ) depend only on n , and rigid isotopy means an isotopy passing only through hypersurfaces of degree...

Some examples of essential laminations in 3-manifolds

Allen Hatcher (1992)

Annales de l'institut Fourier

Families of codimension-one foliations and laminations are constructed in certain 3-manifolds, with the property that their transverse intersection with the boundary torus of the manifold consists of parallel curves whose slope varies continuously with certain parameters in the construction. The 3-manifolds are 2-bridge knot complements and punctured-torus bundles.

Some examples of nonsingular Morse-Smale vector fields on S 3

F. Wesley Wilson Jr (1977)

Annales de l'institut Fourier

One wonders or not whether it is possible to determine the homotopy class of a vector field by examining some algebraic invariants associated with its qualitative behavior. In this paper, we investigate the algebraic invariants which are usually associated with the periodic solutions of non-singular Morse-Smale vector fields on the 3-sphere. We exhibit some examples for which there appears to be no correlation between the algebraic invariants of the periodic solutions and the homotopy classes of...

Some examples of vector fields on the 3-sphere

F. Wesley Wilson (1970)

Annales de l'institut Fourier

Let S 3 denote the set of points with modulus one in euclidean 4-space R 4  ; and let Γ 0 1 ( S 3 ) denote the space of nonsingular vector fields on S 3 with the C 1 topology. Under what conditions are two elements from Γ 0 1 ( S 3 ) homotopic ? There are several examples of nonsingular vector fields on S 3 . However, they are all homotopic to the tangent fields of the fibrations of S 3 due to H. Hopf (there are two such classes).We construct some new examples of vector fields which can be classified geometrically. Each of these examples...

Currently displaying 1501 – 1520 of 2026