Displaying 1861 – 1880 of 2026

Showing per page

Twisted Alexander polynomials, symplectic 4-manifolds and surfaces of minimal complexity

Stefan Friedl, Stefano Vidussi (2009)

Banach Center Publications

Let M be a 4-manifold which admits a free circle action. We use twisted Alexander polynomials to study the existence of symplectic structures and the minimal complexity of surfaces in M. The results on the existence of symplectic structures summarize previous results of the authors in [FV08a,FV08,FV07]. The results on surfaces of minimal complexity are new.

Umbilical characteristic number of Lagrangian mappings of 3-dimensional pseudooptical manifolds

Maxim È. Kazarian (1996)

Banach Center Publications

As shown by V. Vassilyev [V], D 4 ± singularities of arbitrary Lagrangian mappings of three-folds form no integral characteristic class. We show, nevertheless, that in the pseudooptical case the number of D 4 ± singularities counted with proper signs forms an invariant. We give a topological interpretation of this invariant, and its applications. The results of the paper may be considered as a 3-dimensional generalization of the results due to V. I. Arnold [A].

Currently displaying 1861 – 1880 of 2026